

Object-Oriented Systems
Development:
Using the Unified Modeling
Language

Chapter 3:

Object-Oriented Systems Development Life Cycle

- The software development process
- Building high-quality software
- Object-oriented systems development

- Use-case driven systems development
- Prototyping
- Rapid application development
- Component-based development
- Continuous testing and reusability

Software Process

The essence of the software process is the transformation of

- Users' needs to
- The application domain into
- A software solution.

Software Quality

- There are two basic approaches to systems testing.
- We can test a system according to how it has been built.
- Alternatively, we can test the system with respect to what it should do.

Quality Measures

- Systems can be evaluated in terms of four quality measures:
 - Correspondence
 - Correctness
 - Verification
 - Validation

• Correspondence measures how well the delivered system corresponds to the needs of the operational environment.

How would you determine Correspondence?

• It cannot be determined until the system is in place.

• Correctness measures the consistency of the product requirements with respect to the design specification.

- *Verification* "Am I building the product right?"
- *Validation* "Am I building the right product?"

• *Verification* is to predict the correctness.

• *Validation* is to predict the correspondence.

Object-Oriented Systems Development Approach

Object-Oriented Systems Development activities

- Object-oriented analysis.
- Object-oriented design.
- Prototyping.
- Component-based development.
- Incremental testing.

Use-case driven systems development

• *Use Case*, is a name for a scenario to describe the user-computer system interaction.

Object-Oriented Analysis

• OO analysis concerns with determining the system requirements and identifying classes and their relationships that make up an application.

Object-Oriented Design

- The goal of *object-oriented design* (OOD) is to design:
- The classes identified during the analysis phase,
- The user interface and
- Data access.

- Object-Oriented Design (Con't)
- OOD activities include:
 - Design and refine classes.
 - Design and refine attributes.
 - Design and refine methods.
 - Design and refine structures.
 - Design and refine associations.
 - Design User Interface or View layer classes.
 - Design data Access Layer classes.

Prototyping

- A Prototype enables you to fully understand how easy or difficult it will be to implement some of the features of the system.
- It can also give users a chance to comment on the usability and usefulness of the design.

Types of Prototypes

- A horizontal prototype is a simulation of the interface.
- A *vertical prototype* is a subset of the system features with complete functionality.

Types of Prototypes (Con't)

- An *analysis prototype* is an aid for exploring the problem domain.
- A *domain prototype* is an aid for the incremental development of the ultimate software solution.

Component-based development (CBD)

- CBD is an industrialized approach to the software development process.
- Application development moves from custom development to assembly of pre-built, pre-tested, reusable software components that operate with each other.

Rapid Application Development (RAD)

• RAD is a set of tools and techniques that can be used to build an application faster than typically possible with traditional methods.

Rapid Application Development (RAD) (Con't)

• RAD does not replace SDLC but complements it, since it focuses more on process description and can be combined perfectly with the object-oriented approach.

Incremental Testing

- Software development and all of its activities including testing are an iterative process.
- If you wait until after development to test an application for bugs and performance, you could be wasting thousands of dollars and hours of time.

Reusability

• A major benefit of object-oriented systems development is reusability, and this is the most difficult promise to deliver on.

Reuse strategy

- Information hiding (encapsulation).
- Conformance to naming standards.
- Creation and administration of an object repository.

Reuse strategy (Con't)

- Encouragement by strategic management of reuse as opposed to constant redevelopment.
- Establishing targets for a percentage of the objects in the project to be reused (i.e., 50 percent reuse of objects).

Summary

- The essence of the software process is the transformation of users' needs into a software solution.
- The O-O SDLC is an iterative process and is divided into analysis, design, prototyping/implementation, and testing.