[8.2 Curve Representation---Implict form and Parametric form

8. Introductory Material Curves can be represented in two forms:

8.1 Affine Maps (1) Parametric representation

8.2 Curve representation -- Implicit form and Parametric form X = X (t) _ (t)

8.3 Curve drawing - ! y =y

(2) Implicit representation
9. Interpolation and Piecewise Interpolation f(X y) =0
10. Cubic Spline How a circle center at the origin with
radius r can be represent in each form?

11. Conics Parametric representation:

12. Bezier Curves

13. B-spline Curves 1 Implicit representation: 1
14. Rational Curves (P75 - P80) 4 How a space curve (3D curve) can be
1 represented in these two forms? |
15. Back to Conics (P81 - P84) | Parametric representation: |
— | |
16. Curve Manipulation (P85 - P86) . .
[ | ImpI|C|t representation: [ |
| |
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Standard Parametrization of Conics:
| Implicit  |Parametric
Parametric Circle
Representation Ellipse
Hyperbola
Parabola
Finding the parameter value corresponding to a given
(x,y,z) coordinate on a parametric curve is termed
| licit inversion.
mplici ) (a) Find the parameter value for the circle
Representation X(t) = r (1-22)/(1+t2), Y(t) = 2t/(1+t2)
at the point (r,0),(0,r),(-r,0) and (0,-r)?
(b) What the curve will be draw by the following program
f h . segment ?
If we compare the parametric fort=-100,100 step 1
representation for curve C(t)=[X(t),Y(t)], draw(X(0).Y() 1
to the Im[:()thI’[ represenéagpn é:(x’y)zo’ 1 (c) Find the parameter value for the circle X(t) = r cos(t), 4
we see advantages and disadvantages o Y(® =rsin(t) atthe point (1,0),(0,1),(-r,0) and (0,-r)? 1
for each:
Parametric Implicit . 4
Draw u
Transformations u
Is (x,y) on curve u
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[ curve Representation |

How to represents 2D curves in computer?
(1) Via the properties of the curve.

E.g. Line(P,,P,); Circle(P,r);
Ellipse(p,a,b,a); 4—.

(2) Via aset of data point.
Distantage: waste memory, hard to
know the properties of the curve.

—

(3) Via a set of coefficient value for
polynomial function.

(4) Via a set of control points. ./
E.g. P,,P,,P, represent the curve r,

5 G (-t INETTT1T
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[ 8.3 Curve Drawing

What we should know before drawing a
circle (or arc) on screen?

How to draw the circle (or arc) after
knowing the information (Assume the
circle centered at the origin)?

(1) the parametric equation:
(2) The increase measurement of
the angle:
JIJUnuN
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(3) The starting point (X,Yo):
(4) The point (x;,4.Y;,;,) after

knowing (X;y;) (Assume the
circle centered at the origin):

How about the situation that the circle
centered at (C,,C,)?
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What infomation we should know before
drawing ellipse on screen?

How to draw the picture (Assume the
axes of ellipse are X-axis and Y-axis)?

(1) The parametric equations:

(2) ltis trivial to get the increase
measurement of the angle and the
starting point.

(3) The point (x,;,Y;.;) after
knowing (x,y): /J%

JI1Jhmun
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Homework:

How about the situation that the center of
the ellipse is at ( C, , C, ) and the
major axis of the ellipse makes an
angle o with the horizontal ?

JIOUnnN
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What infomation we should know before
drawing parabola on screen?

How to draw the picture (Assume the axis
of symmetry is parallel to X-axis and the
vertex is at the origin.Furthermore,the
parabola is open to the right)?

(1) The parametric equations:

(2) The point (X,4,Yi.,) after knowing (x;,y,): 1

4
1
4

Homework:How about the apes that the
parabola above is at (C,,C,) and the axg
of symmetry makes an angle a with th
horizontal? J1I0nnnn
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What infomation we should know
before drawing hyperbola on screen?

How to draw the picture (Assume the
trsansverse axis is X-axis and the
conjugate axis is Y-axis)?

(1) The parametric equations:

JiJannn
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(2) The point (x,;.y;.;) after knowing
(xy):

Xi.1=a sec(6+ 40)=a - 1/cos(6+ 40)
_ 1 ab/cosB
~% cosB cos( 4 B)-sind sin( b 6)= b cos( 4 B)-tand sin( 46)
bX;
= bcos(46)-Y,sin(46)
_ _ b(tanB+b tan48) _ b(Y;+b tan(40))
Vi =D @N0+10) = = 6tante - b-y, tan( 1)

No matrix form for this parametric equation.

Xi,;=a cosh(6+ 46)=a(cosh® coshl 6+sinh6 sinh 46) 4
=X, cosh AB+a/b Y;sinh 48

Y,.1=b sinh(6+ 48)=b(sinh6 cosh 4 B+cosh® sinh 46) J
=b/a X; sinh 46+Y;cosh 46

cosh AB  b/a sinh A6 0
[le Y|+1 l]=[xl YI 1] a/b sinh A© COSh AB 0 .
0

JJJJIIII
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Curve Tracing:

How to sketch a Curve represented by a
polynomial function?

f(x,y):'?%;; aXiyi=0

(1) Find a initial point p on the curve.

(2) Determine a local approximate at p.

(3) Select a suitable step size and step
along the approximant.

(4) Refine the new point estimate to a

curve point. @
4) 1
(1) 1
1
(3) 1
L]
]
]
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This process is not work for singular point.
Consider the graph for f(x,y)=x3-y?=0
near the origin point. It is hard to find an
local approximate at the origin because it
is not differentiable at this point. We have
to do the curve desingularization.

f(xy)=x3-y2=0 f(x,y)=0

After the transformation x'=x and y'=y/x, we
find a curve f' which is differentiable at
the origin. Then, we can trace f' as
described before and find new point
(x',y"). After that, the new point on f can
be calculated by x=x" and y:x'yJ'.

Curves Page: 14
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9. Curve Interpolation

Find an arbitrary curve which fits a set of
data values is the problem of curve
interpolation.

Lagrange Polynomial:

Let (x;,y;), where i=0,...,n, are 2D points.
We would like to find a curve passing
through these points. Let this curve be:

fn(x) = yOLO,n(X) ot ynLn,n(X)
We hope that f,(x;) = y;, that is,
Lin(x)=1and L; ,(x) = 0 for j <> i
We can define L, (X) as:
Lin(¥) = =

Now, f,(x) can be written as:
f,(0) =

JiJannn
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The degree of the polynomial is tied to the
number of points used. If the number of
the points increase, a higher degree
curve will be found. The higher degree
curve is not only excessive oscillation,
but also numerical sensitivity.

Example: Use a Lagrangian polynomial
to interpolate the curve passing through
(0,0), (1,2), (2,3),(3,5),(4,1)

JI1Jhmun
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Piecewise Linear:

If accuracy is not a major concern,
piecewise linear interpolation may be an
appropriate solution.

f() = )+ [f(x00)-FOI[(x-x)/d]

where X; <= X < Xj,; d = Xj1q7X;
Y

1 1 1 I 1 > X
X, X, X X, X

Example: Find the piecewise linear 1
interpolation for the curve passing ]

through the point (-1,1),(0,0) and (1,1).
1
|
|
|
|
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Piecewise Quadric:

Let (x;y;), wherei=0, ..., 2n and Xi<X; for
i<j, are 2D points. We group three points
to do the interpolation, so that n quadric
curve will be produced. Consider the
curve passing through three points
(X0 ¥o)s (X.Y1)s (X2,Y2)-

Let f(x) = a,x?>+a,x+ay,

from y=f(x), i = 0,1,2, we find three
equations with three variables (a,,a, and
a,, unique solution in general case), so
we find the curve.

Y

. . . 1
. . 4
il
. I I I I > X .
X, X, Xg X, X i u
|
|
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Example: Find the curve passing through
the points (-1,1),(0,0) and (1,1). Find a
circle passing through these three
points.

(1) f(x)=a,x?+a,x+a, a0
1=f(-1)=a,-a,+a, a,ya,=1 0
0=f(0)=a, P laaz= > 21;(1)
1=f(1)= a,+a,+a, ’

0 f(x)=x2

(-1,1) (1,1)

(0.0)

(2)The point (0,1) has equal to these
three points. So, the circle
x2+(y-1)2=1 passing through(-1,1)
(0,0) and (1,1). d
il

i

Notice that the lagrangian polynomial,piecewise lineard
and piecewise quadric are the form of y=f(x), such |

as (1), and not the form of f(x,y)=0, such as (2) N
|
JIJUuNnN
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Hermit Interpolation

The procedure for defining a cubic curve,
using endpoints coordinates and
tangent vectors at the endpoints, is one
form of Hermit interpolation.

Let this cubic curve be:
C(t) = agti+a,t>+a,t+a,
We have C'(t) = 3ast?+2a,t+a,

So C(0) = a,
C(1) = agt+ a,+a;+a,
C(0) = a .

C'(1) = 3a3t2a,+ a;
We have 4 equations with 4 variables, and
a unigue solution can be found in

general case. .
a= C(0) !
a,= c'(0) 4
a,= -3C(0)+3C(1)-2C'(0)- C'(1) 4
a,= 2C(0) -2C(L)+ C'(0)+C'(1) .
= u
[ |
JIJAUNEN
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Let [T] = [t3,t2,,1], algebraic coefficients
matrix [A] = [a;,8,,8;,8,]T, geometric
coefficients matrix [G] = [C(0), C(1),
C'(0), C'(1)]" and Hermit matrix

M]=

C(t) can be written in two form:

(1) Algebraic form:
C(t) = [TI[A]

(2) Geometric form:
C( = [TIMI[G]

Example: Find the parametric cubic curve
C(t), knowing that:

C'(0)=[1,0,0; C'(1)=[1,0,0];

c@)
c@©
C'(0)

z

JIOUnnN
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Find the matrix of geometric coefficients for
a parametric cubic curve, knowing that:

m fort=0, (2,20,2) is a point on the curve and C'(0)
= (x4,0,4x,).

m fort =1, (10,20,2) is a point on the curve and C'(1)
= (%,0,-2x,).

m fort=0.5, (6,20,6) is a point on the curve.

|- SR S S

Homework: (Anand P277, Ex4) A parametric cubic curve passes through the points
(0,0).(2,4),(4,3),(5.-2), which are parametrized at t = 0,1/4,3/4, and 1, respectively.
Determine the geometric coefficient matrix and the slope of the curve when t=0.5.

JIJhmumn
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\ 10. Cubic Spline \

From: Computer Graphics and Geometric
Modeling for Engineers --- Anand

The term "spline" in computer graphics
and geometric modeling refers to the
general piecewise parametric
representation of geometry with a
specified level of parametric continuity.
The cubic spline is represented by a
picecewise cubic polynomial with
second order derivative continuity at the
common joints between segments.

Suppose there are m points Py,P,...,Py.1,
We want to find the cubic spline curve
passing through these points. Let the
curve Ci(t) be the curve with PP, as
endpoints, as the picture show below:

Ci() P,

i+l

Cia(®

Jlanunn
Curves Page: 23

d
i
i
J|
|
|
|
|

From the property of cubic spline, we
have:

C".1(2) = C"(0)

For the cubic polynomial expressed as:
Ci(t)=ag t>+a, t2+a, t+ay;

the second derivative is:

So, C".,(1) = C"(0) implies

Substituting a,, a, values, we have:

Let P;and P’ represent C,(0),C;/'(0) .
respectively, from the position continuity 4
P,(1)=P,,,(0), and the first derivate d
coincides P',(1)=P";;(0), the equation |
can be simplify as: N

|
|
|

JIJUNEA
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Now, we have m-2 equations (1 equation
for each internal joints) with m variables
(P'o.P'1,....P"1.1), two more constraints
must be imposed on the cubic spline.
Two commonly used constraints are:

= Known end tangent vectors, P'yand P’ ;.

m Second derivatives at the endpoints Py and P,
both made equal to zero; this is referred to as a

natrual cubic spline.

In the first case, the system of equations
can be represented in matrix form as:

Solution of this matrix equation yields the
values of all tangent vectors:

P'O

JIOUnnN
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In the second case, consider the second
derivative of the curve Cy(t):
C"o(Y)=625t+2a,
At the point P, (t=0), we have:
C"o(0)=2a,,=0
From the value of a, o, we derive the
equation:

With the similar process, consider the
second derivative of the curve C_ ,(t) at
the point P, (t=1), we derive the
equation:

The m equations in m unknowns can be
represented in matrix form as:

]
d
]
|
|
|
|
|

JIJUnuN
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Example: Consider four 2D points
P,=(0,0), P,=(2,1), P,=(4,4), P;=(6,0)
with given tangent vectors
P'x=[1 1] and P';=[-1 1]
Determine the values of the tangent

vectors at P, and P, needed for a cubic
spline interpolation.

JiJannn
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Example:Solve the problem in the
previous example, using a natural cubic
spline. Calculate cubic spline values at
t=1/3 and t=2/3 for each spline segment.

d
]
i
|
|
|
|
|
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Conics are commonly described in
(1) implicit form:

apeX>+aggy?+ay Xy +aypX+ag Y +ag = 0
(2) matrix form:

Conic curves or sections are either central
or noncentral. The central forms are
those with a center, specifically the
ellipse and the hyperbola. (A circle is a
special case of an ellipse.) The parabola
is the only noncentral conics.

Given specific values aj, how can we
know whether it represents an ellipse, a
hyperbola or a parabola (or degenerate
forms)?
Consider the matrix form as:
(L2)IX]AIX]" =0
Let's consider translation and rotation on
this conic.
JAIJnunN
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Translation of the conics :
The matrix form for the conic after the translation is:
L2)XTAITATIXTT = (/2)IX]ATX]T = 0
where the translation matrix
[Tr]=

From [A]=[Tr][A][T(]7, the elements in [A] are:*

If the conic is central, the linear terms are eliminated
or the center of the conic is translated to the origin.
That is:

a0 =8y =0

*Let R; means the i-th row for [Tr], then [AT=[Tr[A][Tr]" =[R; A R]"]

JIJUnuN
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By solving a,,' = ay;,' = 0, we have:
[mn ]\[ = ] ovr\/

which may be written as [L] [M] = [Q]

If [L] is singular, the solution for [M] does
not exist and the conic is noncentral, i.e.
a parabola. Otherwise, a solution for [M]
exists and the conic is central.

If det[L] < O, then the conic is a hyperbola.
If det[L] = O, then the conic is a parabola.
If det[L] > O, then the conic is an ellipse.

Example: Determine the type of conic
described by:

2x2 - 72xy +23y2 + 140x - 20y + 50 =0

JiJannn
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Rotation of the conics :
The matrix form for the conic after the rotation is:
IXIRITAIRITIX]T = [XJA"]IX]T = 0

where the rotation matrix
A=
From [A"]=[R][A][R]", the elements in [A"] are:

[R]=

ay'=
ay,"=
ap;"=
ay,"=
ay,"=
agy"=
If the axes of the conic are parallel to the
coordinate axes, then the cross-product term
a,;Xy is not present.
What degree of the angle we should rotate so that
a,;"=07?
JJJhnAn
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Conics in standard form:

For a central conic the standard form
places the center of the conic at the
origin with its axes aligned with the
coordinate axes.

For a noncentral conic, the standard form
is with the axis of symmetry of the
parabola coincident with the positive x-
axis, with the vertex at the origin and the
parabola opening to the right.

If the conic is central, then it is placed in
the standard form by a combination of
translation and rotation. Translation
followed by rotation yields:

XITARIAIRTTTATIX]™ = [X]A%]X]T = 0
From [A3]=[Tr][R][A][R]'[Tr]", the elements
in [A"] are:

3I —
0 =

1
i
1
ag’'= J|
a; ¥ = |
a;* = |
ag® = |
a” = JIOuunAN
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Now, the standard form of the conic can
be written as:

/fa 0 0 \/x\
XIASYIX]T = [xy1]| 0 B O ||y |
\0 0 k/\1/

Write out the matrix into implicit form, we
have:

Let's systematically investiage the results
for various values of a, 3, and K.

=

a B Conics
= ap>0
= af<0

oneofa,f=0

> >

4
4
1
d
< < [
|
|
|

af<0
ap=0

V|V |V |V

JIJUNuN
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Example: Transform the following conic into
standard form:

2X2 - 72xy +23y? + 140x - 20v + 50 = 0

d
i
i
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|
|
|
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If the conic is noncentral (a parabola), the linear terms
cannot both be eliminated. However, one of the
linearly dependent terms along with one of the
guadratic terms either in x or y can be eliminated.

Let consider the rotation (elimination a,,) followed by a
translation. That is:

XIRITAIAITTTIRITIXTT = [XIATIX]T = 0
From [A*]=[R][Tr[A][Tr]"[R]T, the elements in [A*] are:
4 —

0
e
A" =
o
a;*=0
"

0

o
Q" =

o
Qo =

Here, either a,,* or a,,* will be zero. We try to d
eliminate one of a,,* and a,,*'. 1
4

a;* =0yieldm =
ay* =0yieldn=

What is the relation among a,*,aq,*,a,,*, and a,*? 4
|
|
n

JIOuunnn
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Assuming that the linear terms in y and
the quadratic terms in x are eliminated
(a0 = ag,* = 0), the standard form of
the parabola can be written as:

/0 0 y\
A*]1=10 B 0 |
\y 0 «/

Write out the matrix into implicit form, we

have:

The final step to transform the parabola
into standard form is:

Exercise: Given [A], draw a flow chart
which identify the types of the conic
represented by matrix [A].

JIOUnnN
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Summary of Conic Sections

Name Equation  Conditions  Type Sketch

Ellipse ax?+By?=k K a, >0 Central é
Hyperbola ax2+By?=k B <O0<ka  Central }

ax?+By?=0
Parabola By Noncentral —
Bx2+ay?=0

MM

Empty set  ax®+By?=k aB<0<k (Central) (No sketch)

Point ax2+By2=0 a, B>0 Central
Pair of lines  ax2+By2=0 B<O<a Central —>K—— 1
4
Parallel lines  ax? =k a,k>0 Central ++ 1
4
Empty set ax2 =k a<0<k (Central)  No sketch .
‘Repeated' line  ax? =0 Central —1—— .
JIJUuuNN
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Translation of the conics (m,n) units

JiJannn
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[ 12. Bezier Curve }

Bernstein Polynomialss
A Bernstein polynomial is defined by:

B (t) =Cnti(1-)™ O<=i<=n
where n is the degree of the polynomial
and C" = n!/il(n-i)!

Honer's method for Bernstein polynimials
can be:
B (1) = (1-)"Cnu' u = t/(1-t); 0<=t<=1/2
Bi (1) = B;(T) where T=1-t; 1/2<=t<=1

The properties for the Bernstein

polynomial are: 1
(1) Partition of unity: By ,()+...+B, (D=1 1]
1
(2) Recursion:B, ,(t) = (1-)B; , 1 ()+tB;; , 1 ()
|
|
|
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(3) Derivative:(d/dt)B; ,(t)=n[(B;. n.1(0)-B; .1 ()]

(4) Linear precision:

(5) Symmetric with respect to t and 1-t:
Bi,n(t) = Bn-l,n(l't)

(6) Degree elevation formula:

B; (1) = 1
(7) Subdivision:B"(ct) = ZBjn(C)Z”j(t) 1
1

1

|

(8) Product: |
B m()B;n(t) = |
JAJHUnNN

Curves —~ Page:41

Bezier Curve

Bezier curves employ control points, that
is, an ordered set of points (Py,Py,...,P,)
that approximate the curve. A Bezier
curve of degree n, specified by n+1
control points, is a parametric function of
the following form:

e =
where the vectors P, represent the n+1

control points. B, ,(t) is the blending
function for the Bezier representation.

The polygon G form by P,,P,,...,P, is
called the Bezier polygon or control
polygon of the curve C(t). Sometimes we
also write C"(t) = B[P,,Py,....P;t]=B[G:t]
or, shorter, C"=B[P,,P,,...,P,]=BG.

Consider the Bezier curve with control
points: P, = (i/n, 1) for one i;

P; = (i/n, 0) forallj*i,

Then )
cy =
=
So, we can easily find the control points for

the curve of Bernstein polynomial B, (t).
JIJUnNnN
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(9) Integral:
]
d
]
]
|
|
|
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1 1 1
0 0 0
Bo‘z 1 B1‘2 Bz,z

With the same idea, B; (t) where n=4,5
are:

1
0 1
B\,4
1
0 1
Bis JIJAuNA
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The de Casteljau Algorithm

We give a simple construction for the
generation of a parabola; the
straightforward generalization will then
lead to Bezier curves. Let P,,P,,P, be
any three points in R? (or R%), and let t
be a real number. Construct

(1) PLo(t) = (1-)Pg + tPy
(2) PL(H) = (1-)P, + tP,
(3) P2p(t) = (1-)Po(t) + tPL, (1)
Inserting the first two equations into the
third one, we obtain a quadratic

expression in t and so P?(t) traces out a
parabola as t varies from - to .

The above construction consists of

repeated linear interpolation. 1
i

p1 1

P, L P, "
|

|

P, ]
JIJnuuuN
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This algorithm can be generalized to generate a
polynomial curve of arbitrary degree n:

de Casteljau algorithm:

Given: Py,P,, ... ,P, are points in R® and t is a real
number.

Set P'i(t) = (1-)PL(t)+tP™L,,(t) where

r=1,..nandi=0,..,n-rand P%(t)= P,

Then P"y(t) is the point with parameter value t on
the Bezier curve generate by the control points
Po.Pyy oo Py

The intermediate coefficients P'j(t) are conveniently
written into a triangular array of points, the de
Casteljau scheme:

Po Pp Py P

. Plopzpll PZPI2
0 1
P3, 1
4
S
& 1
P, |
|
|
INRRELL L]
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Some properties of Bezier curves
1 Convex hull property: (the curve is inside
the control polygon). This follows, since

for 0<= t<=1, the Bernstein polynomials
are nonnegative, and their sum is equal to
one.

Let C and C' are two Bezier curves and G
and G' are their control polygons. Do
these two curves intersect if G and G' are
not intersect? How about G and G' do
intersect?

2 Endpoint interpolation: (the curve passes 4
the endpoints of the control points). 1

1
1
|
3 Symmetry:(B[P,,P,....P, ; 1=B[Py,....P1,Po ; 1))l
|

JIJannnn
Curves Page:47

4 Pseudo-local control: If we move only one of the
control polygon vertices, say p;, then the curve is
mostly affected by this change in the region of
the curve around the parameter value i/n. This
makes the effect of the change reasonably
predictable, although the change does affect the
whole curve.

5 The derivative of a Bezier curve:
(drdt)Cn(t) =

-, P,-Po
PZ
P,-P,
PO
P3
6. Degree Elevattion Py-P, j
]
]
|
|
|
JIJhmumn
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What we should notice if we want
construct a piecewise Bezier curve
which has C?* continuity?

What we should do if we want construct a
closed curve?

Example: Given two Bezier curves defined
by: B[(2,3,4),(3,1,5)(x,y.2),(3.4,3)]

B[(3,4,3),(2,6,0),(5,7,5)(5,2,3)]
Establish the algebraic conditions that
X, Y,z must satisfy to ensure C!
continuity.

JIJ0nnn

Curves —~ Page:49

i
J
]
J|
|
|
|
|

Piecewise Bezier Curve

CP° continuity: p,=d,

C? continuity: p,,.;,p,=00,d; colinear.

C2 continuity: p,.,,Pp.1,Pn=00.d;.d, colinear.
Picture from: Mortenson's book.

PZ
Pl./ \fa G
P°/ P,=0o / I s
p
/ q;
.
P, o

y.

q.
e 1
Closed Bezier Curves ’ 1
Po=Pa b, P, 1
P, P, J
Po=Ps .
|
P,=P, Py Ps |
Picture from: Anald's book. JIJhmumn
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[Matrix form for Bezier curve}

Bezier curve B[P,,P,,...,P,] can be
conveniently expressed in matrix form.

C(t) = B[Po,Py.....P,]
= [BO,n Bl,n Bn,n] [PO I:’l I:’n]T
= Lt 1 [m] [Py Py PIT
where m; =

The cubic Bezier curve can be rewritten in
matrix form as:

C3(t) =B[Py,P1,P,,P:]
=[Bos B13Bo3B33] [Po Py Py P.J"
= [(2-t)3 3t(1-t)? 3t2(1-t) t3][P, P, P, P4]"

= [ttt 1] [Py Py P, PSIT

JIJUnnn
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Cubic Bezier Curves

P
Po g
/ P P, L
P, P,
P,

Cubic Bezier curves and their modification:

(a) Moving point p, to p,” "pulls” the curve
toward that vertex.

(b) By specifying multiple coincident points
at a vertex, we pull the curve in closer
and closer to that vertex.

From: Mortenson's book

Curves
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13 B-Spline Curves

B-spline curves are similar to Bezier
curves in that a set of blending functions
combines the effects of n+1 control
points P; given by:

C(t) :EO N (DP;

Compare with Bezier curves, the most
important difference is the way the
blending function N; ,(t) are formulated.

N, =1 ifti<=t<ty,
=0 otherwise

and

(t'ti)Ni,k-l(t) (ti+k't)Ni+1,k-1(t)
N;k(®) = +

IRt b - G
where k controls the degree (k-1) of the
resulting polynomial in t and thus also
controls the continuity of the curve.
(What number control the degree of the
Bezier curve?) The t; are called knot
values and [t, t, ... t,,] are called knot
vector. They relate the parametric value
t to the P; control points.

' P J1auunn
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The knot vector [t,, ty, ... ,t,,] can be
classified as:
(1) Uniform/periodic
A uniform knot vector has equispaced t; values, so

that t; - t, = a for all intervals, and a is a real
number.

e.g.
(2) Nonperiodic

A nonperiodic or open knot vector has repeated

knot values at the ends with multiplicity equal to

the order of the function k and internal knots
equally spaced.

e.g.

i-1

(3) Nonuniform

If the repeated knot values at the ends with
multipility is not equal to the order of the function
k,or the internal knots are not equally spaced, the
knot vector is said to be nonuniform.

eg.

of the B-spline, it can be said, in
general, that B-spline curves have this

i

J

i

1

Since the knot vectors influence the shape B
|

classification. [ ]
|

Nonperiedic B-spline Curve

For an open curve, the t, are:(define 0/0=1)
t=0 ifi <k
t=i-k+t1 ifk<=i<=n
t=n-k+2 ifi>n

with 0<=i<=n+k

The range of the parametric variable t is
0 <=t<=n-k+2

Let's see how these equations compute the
blending functions N;, for k =1,2 and 3.

Given six control points (n=5) and k=1, we
find that:

OEIi£6 and O£t£6

[ttt ttst] = [0123456]
No ()= Ny ()=
N, (t)= N ,(t)=
N, ()= N5 ()=
JIumnnn
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1
0 \ \ \ \ \ |
0 1 2 No‘l(t) 4 5 6
1
0 \ \ \ \ \ |
0 1 2 Nu@® 4 5 6
1
0 \ \ \ \ \ |
0 1 2 Ny 4 5 6
1
0 \ \ \ \ \ |
0 1 2 Naa() 4 5 6
1 J
i
0 \ \ \ \ \ I 1
0 1 2 Ngs(® 4 5 s
1
|
0 \ \ \ \ \ | W
0 1 2 Ngy(t) 4 5 ° u
JIJUmnnN
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If we apply these blending functions to any
set of six control points P, i=0,...,5, what
kind of curve we find?

Next, for the N, ,(t) blending functions with
n=5 and k=2, we find that

Ng (1) = (1-)N 4 (1)

Ni (1) = tNp (1) + (2-)N, (1)
Ny o(t) = (1N, 1 (1) + (3N (1)
N3 o(t) = (t2)N3 1 (1) + (4-)N, 1 (1)
N4,2(t) = (t‘3)N4,1(t) + (S‘t)Ns,l(t)
Ns,z(t) = (t‘4)N5,1(t)

If we now apply these blending functions to
any set of six control points P;,i=0,....,5

what kind of curve we find? The curve is
CO, Ctor C2curve?

C(t) = EN, P, = (1-)P, +tP, O£t<1
(2-)P, +(t-1)P, 1£t<2

(3P, +(t-2)P, 2£t<3
(4P, +(t-3)P, 3£t<4
(5-H)P, +(t-4)P5 4 £t<5
It contains line segments connecting
Po,P1,P,,P,,P, and Py
So, itis CO curve.
JIJUnuN
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£if and £tE
titbttytststy] = [ ]
No.(D) = Ny, () = |
i
NZ,l(t) = Nz, (D) = 1
1
N1 () = N5, (t) = L]
|
|
JIJUAUNN
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1
0 \ \ \ \ |
0 1 2 ND,Z(‘) 3 4 5
1
0
0 1 2 Ny, 3 4 5
1
0 \ \ \ \ |
0 1 2 N,,(t) 3 4 5
1
0 \ \ \ \ |
0 1 2 Ngy(t) 3 4 5
1 i
1
0 \ \ \ \ | 1
0 1 2 N,(t) 3 4 5
1 1
|
0 \ \ \ \ | |
0 1 2 Ng,(0) 3 4 5 N
JIJUARNN
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Finally, for the N, 5(t) blending functions with
n=5 and k=3, we find that:

£if and £tE

oty ttstyts tety tg] = [ ]
Noa(t) = Ny, (t) =
Ny (t) = N, (1) =
Nga(t) = N5, (t) =
Ng,(t) =0

N1,2(t) = (1't)N2,1(t)
Noo(t) = Ny () + (2-)N3 (1)
N3 o(t) = (t=1)Ng 1 (1) + (3N, (1)
Ny o(t) = (t=2)Ng 1 (1) + (4-HN5 (1)
Ns,z(t) = (t'3)N5,1(t)

JI1Jhmun
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Nga(t) = (1-1)2N, 4(t)

Ny 5(t) =(1/2)t(4-3O)N, 1 () + (1/2)(2-1)°Ng 1 (1)

Ny 3(t) =(1/2)12N, ; (1)+(1/2)(-2t2+6t-3)N5 4 (t)
+(1/2)(3-1)2N,4 4 (1)

N3 5(t) =(1/2)(t-1)2Ng 4 ()+(1/2)(-2t2+10t-11)
Ny 1 (D+(1/2)(4-1)2N5 4 (t)

N, 3(t) =(1/2)(t-2)?N, 4 (1)+(1/2)(-3t2+20t-32)
N 1(t)

Ns,s(t) =(t'3)2N5,1(t)

If we now apply these blending functions to

any set of six control points P;,for i =
0,.....,5 the curve we find is:

JIOUnnN
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Nos(t)

N, 5()

NZ.S(t)

N3 5(t)

Ny 5(0)

Ns 5(t)

JIJUnuN
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A nonperiodic or open knot vector has
repeated knot values at the ends with
multiplicity equal to the order of the
function k and internal knots equal
spaced. For example, assuming a
control polygon with four vertices:

Order No. of knots Nonperiodic
(9] (m+1=n+k+1) Knot Vector

2 6 [001233]
3 7 [0001222]
4 8 [00001111]
From: Anand's book.
JIOJnuun
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Comparison between Bezier and
nonperiodic B-spline Curve:(The
Bezier representation is a special case
of a nonperiodic B-spline, where the
number of vertices used equal the
order of the curve. The knot vector, in
this case, becomes [0 ... 0 1 ... 1] with
k 0'sand 1's)

1. End point interpolation:

2. Local control of the curve:

Each segment of a B-spline curve is
influenced by only k control points, and
conversely each control point
influences only k curve segments.

3. Convex hull property: 4
d
4. Degree of the curves are decided by: J
1
5. Continuity: |
|
|
JIJUNuNN
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Local control for a quadratic (k=3) nonperiodic
B-spline curve.

Po Py’ Ps

Py Ps Ps

Convex hull property of Bezier curve and
strongly convex hull for (nonperiodic) B-spline
curve.

Po Re Fo Ps 1
P, P, P, Py .
Pl PS P1 P5 J
Ps P
|
|
|
JIJONEnN
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Uniform B-spline Curve

For a uniform B-spline curve, t; = i with
0<= i<=n+k. The range of the parametric
variable t is (k-1) <=t <= (n+1) where k
is the order of the curve, n+1 is number
of the control points. The number of
knots can be calculate as n+k+1.

Notice that the range of the parametric
variable tis (k-1)<=t<=n+1.

Let's see how these equations compute
the blending function N;, for k=1,2 and 3.

Given six control points (n=5) and k=1, we
find that:

0<=t<=6 and t;=i for all i where 0<=i<=6

If we apply these blending functions to any set of
six control points P;, i=1,...,6, what kind of curve
we find?

Next, for the N; ,(t) blending functions with n=5 and
k=2, we find that:

1<=t<=6 and t;=i for all i where 0<=i<=7
N, ()= 1 for i<=t<i+l (0<=i<=6)
0 eleswhere
N 2(=(t-E)N; 1 () +(t-)N;. 5 (D)
=(tON; (O +(+2-)N;,y 4 (1) (0<=i<=5)

N\,Z(t)

0 \ \ \ \ |
i i+1 i+2
If we now apply these blending functions to any set
of six control points P;, what kind of curve we
find? The curve is C°, C! or C2 curve?
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. . J
N, ()= 1 for i<=t<i+l
' J
0 eleswhere
i
No. (0 4
1 |
N\,l(t) .
0 \ \ \ | 3
i i+1
JIJUmuNN
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1
0 \ \ \ \ \ \ |
0 1 2 3 No‘z(t) 4 5 6 7
1
0 \ \ \ \ \ \ |
0 1 2 3 le(t) 4 5 6 7
1
0 \ \ \ \ \ \ |
0 1 2 3 N2 2(0 4 5 6 7
1 :
0 \ \ \ \ \ \ |
0 1 2 3 N3 z(t) 4 5 6 7
1
0 J
0 1 2 3 N4 2(0 4 5 6 7 J
1 J
0 R R B \ L d
0 1 2 3 N5 2(0 4 5 6 7 .
% Domain ———— ! .
[ |
JIJUmnnN
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Finally, for the N, 5(t) blending functions
with n=5 and k=3, we find that:

2<=t<=6 and t=i for all i where 0<=i<=8
N, = 1 fori<=t<i+l (0<=i<=7)
0 eleswhere
N; 2 (O=(t-t)N; 1 (O)+(tio-)N;, 1 (1) (0<=i<=6)
()N, O+(+2-ON,0 5 (1)
N; 3(1)=(1/2) (t-t)N; (0 +(L/2) (ti5-YNi1 (D)
(O<=i<=5)
=(1/2)(ti)2N, 5 ()
+(1/2)[-2t2+(4i+6)t-(2i2+6i+3)IN;,4 4 (t)
+H(1/2)(+3-2N,. 1 (1)

Ni(t)

i i+1 i+2 i+3

Notice the range of the domain t.

JIOUnnN
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Periodic B-spline and nonperiodic B-spline

P, P, Ps

Po .

Nonperiodic B-spline curve (n=5, k=3)

Pg

P, Py
P3

Period B-spline curve (n=5, k=3; n=5,k=4)

d
d
. : o 4
Notice the difference between periodic B- "
spline and nonperiodic B-spline. Notice
also that neither the k=3 curve nor the L
k=4 curve passes through any of the |
control points in periodic B-spline. N
Picture From Moterson's book. 5

JIJUnuN
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Uniform quadratic B-splines

Let k=3, we have

N.() =1 for i<=t<=i+1

0 elsewhere

Nio(®) = (E)N, 1 (O+(+2-N,g 1 (D)

N; s = (L/2)(t-)?N; 1 (t)
+(L/2)[(t-i)(i+2-t)+(3+i-t)(t-I-1)IN;, 1 4 (1)
+(1/2)(i+3-1)2N;,5 4 (1)

Let C(t) be the uniform quadratic B-spline
curve with n+1 control points. That is,
C®) = Noa(®OPg + ... + Ny 5P,

we want to find the expression C(t) for the
interval i+2<=t<i+3, call it C,(t)

Ci(t)= (1/2)(i+3-t)?P;
+ (1/2)[(t-i-1)(i+3-t)+(4+i-t)(t-i-2)] P,y
+ (12)(t-i-2)%P,,,

There are computational advantages to
reparametrizing the interval so that
0<=t<1 and then identifying the interval
by subscripting C(t) as Ci(t) for the ith
interval.

JiJannn
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To reparametrize the abouve equation,
replace t by t+i+2, so that

Ci(t) = (U2)[(1-4)Pi#(-2E2+2t1)P, +12P,
We can easily rewrite the equation into
matrix notation:

C(t) = (L2 t 1] [P, Py P

The analogous form for cubic B-splines
(k=4) is:
C(t) = (1/6)TMP where

T = [B€t1] ]
/ \ 1
M= | I i
I I |
\ / |
P =[P Piy Pip Pl |

O<=t<=1 and 0O<=i<=n-3 for open curves [

JIOuunnn
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Closed Periodic B-spline Curves

Uniform B-splines are well suited to represent closed curves.
All that is needed is a change in the number of segments
used. We modify the previous equation as:

Ci(t) = (1/6)TMP" where
/P, \

P'= | Piimodme |

imod (n+1)

| Pi+2mod(n+1) |
\ P13 mod (n+1) /
0<=t<=1 and O<=i<=n for closed curves

(Notice that the number of curves change from n-2 to n+1)

Example: Find the starting and ending locations for a
uniform quadratic B-slpine segment.

i
J
]
J|
|
|
|
|
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Example: Use four control points to
approxiate a circle by a closed, uniform,
guadratic B-spline. Check the error
incurred in the approximation at t=0.5 in
the first segment. t

Po:(-h-) , Pi(-b) , Pyi(rr) , Pai(r,-r) Py Py

Po Py

Example: Use a uniform quadratic B-
spline curve with four control points to
describe an ellipse whose major axis
has a length of four units and minor axis

two units. / 2

4

JIJhmun
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Conversion Between Representations

A freeform cubic curve is described by
equation of the form:

x = TMP

where T = [t3 t2t 1], P is the matrix of control
points (or geometric coefficients) and M is
the basis matrix. Corresponding values of
y and z can be similarly found.

To change from one type of representation
to another, the equation x = TMP; = TM,P,
yields P, = M*M;P;

Example: Given a cubic Bezier curve
represented by the control point P,(-6,0,
0), p,(-3,4,0),p5(3,-4,0) and P,(6,0,0), find:

(a) The control points that would reproduce
this curve as a uniform cubic B-spline.

(b) The geometric coefficient matrix that
would reproduce this curve as a Hermit.
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Rational Curves

The term "rational" means these functions
are obtained by the "ratio" of two
polynomials. They are invariant under
projective transformations. That is, the
perspective projection of a rational curve
is itself a rational curve, which is not true
for the nonrational or integral curves.
The rational polynomial functions
represent the conics and freeform in one
form.

Both Bezier and B-spline curves posses a
rational form.

Bezier B-spline
Nonrational| Q(t) = Z B;,()V; P(t) =2 N,®V, ]
(Integral) 1
Z B (wV; Z N (WY, 1
Rational Q) = P(t)=
Z B (Ow =N, (Ow;
| N
|
|
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The perspective projection of a nonrational
(or integral) curve is not a nonrational (or
integral) curve. Why?

Consider the Bezier formulation in 4D
homogeneous space, this would result in
the expression:

Q"(t) = Z B;n()VY,
where
QY(t) : points on the curve in 4D
homogeneous space --
coordinates (w,(t),w,(t),w,(t),w)
B; (1) : standard Bezier blending function
VW control points in 4D homogeneous
space ]
The 3D projection of the 4D control points ]
VW is V, = VW /w, where w; is the weight
for the control point V,. Analogously, the 1
points Q(t) on the curve can be written in J

rational form as the projection from 4D to N
3D space:

Q) = QM/W(Y) = (ZB; (W, )/(ZB; y(t)w:) :

JIJONEnN
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If w, =1 for all i, Q(t) is a nonrational curve.
In some other case, Q(t) is a rational
curve.

If w, >= 0 for all i, the convex hull property
for the curve Q(t) are still valid. Q(t) also
has end point interpolation property.

If w,_, and w,,, are fixed, an increase in the
value of W; will pull the curve toward V,.

Rational curves has been gaining popularity
in CAD, and today many commerical
systems use these representations which
include Bezier and all forms of B-splines
(uniform/periodic, nonperiodic and
nonuniform). The most common scheme,
however, appears to be the nonuniform |
rational B-spline, commonly referred to as ]
NURB, popular because the NURB
representation includes all B-splines and
Bezier curves. It has the capability of |
representing a wide range of shapes, N
including conics, using one cannonical
form. (From Anand, "Computer Graphics B

J
i
Bezier curves are said to lack local control. 4
Nonperiodic B-spline exhibiting local .

control. |
In rational curve, the increase in the value N

of w, will pull the curve toward V. [
Picture from Anand's book. JJaunnnn
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and Geometric Modeling for [}
Engineerings", 1993) IRCTII1]]
Curves Page: 78
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Nonperiodic cubic rational B-spline and N
nonuniform cubic rational B-spline.

Picture from Anand's book. "
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@) (b)

(©)

(a) A nonrational curve with a change in
one control point.

(b) A nonrational curve with a change in
one weight.

i

1

1

1
(c) A rational B-spline curve whose weight |
of the indicated control point is changed.
The curve is only affected locally. N
|

Picture from Farin's book.
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Conics as Rational Bezier

A conic section in R? is the projection of a
parabola in R3 into a plane.

Theorem: Let Q(t) in R? be a point on a
conic. Then there exist numbers wg,,w;,w,
in R? and points by,b,,b, in R? such that

WoboBg o()+W;b; B o(t)+W,0,B, 5(1)

QW) =
WoBg (1) +wW; B ,(t)+w,B, »(t)
Proof:

Gerald Farin, "Curves and Surface for
Computer Aided Geometric Design",
p179, Academic Press, 1988.

We call the points b; the control polygon of
the conic Q; the number w, are called
weights of the corresponding control
polygon vertices. Thus the conic control
polygon is the projection of the control
polygon with vertices [wjb; w], which is
the control polygon of the 3D parabola
that we projected onto C. IBCLLL]
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examples, w,=w,=1. As w; becomes
larger, the conic is "pulled” towards b;.

]

il

il

|

Conic sections: in the two shown N
|

Picture from Farin's book. |
|
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Conics as Rational B-spline

What value of k and n of rational B-spline
are best suited to represent the conics?

Defining the quadratic rational B-spline by
three control points, with 0 <=t <=1 and
a knot vector [t] =[0 00 1 1 1], yields:

WobgNg 3(t)+ W11 Ny 5(t)+W,0,N, 5(1)
P() =

WoNg 3(t)+W3Ny 5(t)+w,N, 5(t)
This equation defines a family of conics,
with each conic passing through b, and
b,, and tangent to the line segment from
b, to b, and from b, to b,.

JI1Jhmun
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The value of w, determines what conic
type will be obtained, such that:

w; =0 line segment

0< w,;<1 elliptic segment
w; =1  parabolic segment
w; >1  hyperbolic segment

’ Curve Manipulations ’

1. Display

Curve

2. Transformation
3. Evaluating points on curves

4. Segmentation

Segmentation or curve splitting is defined as replacing
one existing curve by one or more curve segments of
the same curve type such that the shape of the
composite curve is identical to that of the original d

il
J
il
i
|
|
Picture from Anand's book. u
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5. Trimming

Trimming is mathematically  identical  to
segmentation. The only difference between the
two is that the result of trimming a curve is only
one segment of the curve bounded by the
trimming boundaries.

Trimming can truncate or extend a curve.

(a) Truncated curve (b) Extended curve

6. Blending
The blending problem can be stated as: Given two
curve segments, find the conditions for the two
segments to be continuous at the joint.
7. Offset curve (2D) and  surface
Offset curve of a specified curve f is the curve which
has equal distance to f.
8. Voronoi curve (2D)
In 2D, Voronoi curve is the curve which has equal
distance to two or more other curves.

9. Curve/Curve intersection

From Zeid's book. JAIJaunN
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1
557 558 .
|
|
Segment of a circle for modeling purposes. Reparametrization of a segmented curve. .
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Computer Aided Geometric Design ’
[
Curve I \ -
" N
[
Surface [ 7
[
o =]
4
u
|
: |
Real world object [ |
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From: A survey of curveand surface methodsin CAGD
--- Bohm, Farin and Kahmann

CAGD - short for Computer-Aided Geometric Design - is
concerned with the approximation and representation
of curves and surfaces that arise when these objects
have to processed by a computer.

Designing curves and surfaces plays an important role
in the construction of quite different products such
as car bodies, ship hulls, airplane fuselages and
wings, propeller blades, shoe insoles, bottles, etc, etc,
but also in the description of geological, physical
and even medical phenomena.

Before the advent of computers, these design problems
were dealt with by means descripitive geometry. A
surface was defined by a set of curves, usually plane
sections plus some characteristic feature lines. This
information was sufficient to manufacture templates,
and the templates were used to produce (wooden)
master models. The stamps and dies were obtained
from the master models by means of copymilling.

il

In the late fifties, it became possible to drive these milling 1
machines by "numerical control”. i.e. the machining 1
instructions could be generated by a computer
program. In order to fully exploit this capability, it 1
was necessary to store the surface definition in a [
computer-compatible form. The problem thus arose
how to trandate existing surface definitions into a ]
"computerized" format. i.e. how to design a
" mathematic model" .
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