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8. Introductory Material 
8.1  Affine Maps
8.2  Curve representation -- Implicit form and Parametric form
8.3  Curve drawing

9. Interpolation and Piecewise Interpolation

10.  Cubic Spline

11. Conics

12. Bezier Curves            

13. B-spline Curves         

14. Rational Curves         (P75 - P80)

15. Back to Conics           (P81 - P84) 

16. Curve Manipulation    (P85 - P86)
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8.2 Curve Representation---Implict form and Parametric form

Curves  can be  represented in two forms:
(1)  Parametric  representation

x  =  x (t),      y  =  y (t)
(2)  Implicit  representation

f(x,y)  =  0
How  a  circle  center  at  the  origin with 

radius r can be represent in each form?
Parametric representation:

Implicit representation:
How  a   space  curve  (3D curve)  can  be  

represented  in  these  two  forms?
Parametric representation:

Implicit representation:
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If  we  compare  the  parametric 
representation for curve C(t)=[X(t),Y(t)], 
to the implicit representation C(x,y)=0, 
we see advantages and disadvantages 
for each:  

Parametric       Implicit
Draw
Transformations
Is (x,y) on curve

Parametric 
Representation

Implicit 
Representation
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Standard Parametrization of  Conics:
Implicit       Parametric

Circle              
Ellipse
Hyperbola
Parabola         
Finding  the  parameter  value corresponding  to  a given 

(x,y,z) coordinate on a parametric curve is termed 
inversion. 

(a) Find the parameter value for the circle 
X(t) = r (1-t2)/(1+t2), Y(t) = 2t/(1+t2)

at the point (r,0),(0,r),(-r,0) and (0,-r)?
(b) What the curve will be draw by the following program 

segment ?
for t = -100 , 100   step 1

draw(X(t),Y(t))
(c) Find the parameter value for the circle  X(t) = r cos(t),
Y(t) = r sin(t)   at the point (r,0),(0,r),(-r,0) and (0,-r)?     

(r,0)

(0,-r)

(0,r)

(-r,0)

(0,r)

(0,-r)

(r,0)(-r,0)
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How to represents 2D curves in computer? 
(1)  Via  the  properties  of  the  curve.

E.g.  Line(P1,P2);              Circle(P,r);

Ellipse(p,a,b,α); 

(2)  Via  a set  of  data  point.
Distantage: waste memory,  hard to
know  the  properties  of the curve.

(3)  Via  a  set  of  coefficient  value  for 
polynomial  function.

(4)  Via  a  set  of  control  points.

Curve Representation

E.g. P0,P1,P2 represent the curve

P1

P2 P3

Σ
i=0

2
C

2
i ti(1-t)2-i
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What we should know before drawing a
circle (or arc) on screen?

How  to  draw  the  circle  (or  arc) after  
knowing  the  information (Assume the 
circle centered at the origin)?

(1)  the  parametric  equation:

(2)  The  increase  measurement  of                 
the  angle:

8.3 Curve Drawing
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(3)  The  starting  point  (x0,y0): 

(4)  The  point (xi+1,yi+1)  after 
knowing (xi,yi) (Assume the
circle centered at the origin): 

How  about  the  situation  that  the circle    
centered  at (Cx,Cy)?
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What infomation we  should  know before 
drawing ellipse on  screen? 

How  to  draw  the   picture (Assume the  
axes of ellipse are X-axis and Y-axis)?
(1)  The  parametric  equations:
(2)  It is trivial to get the increase 

measurement of the angle and the 
starting point.

(3)  The  point (xi+1,yi+1)  after 
knowing (xi,yi): 
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Homework:
How about the situation that the center of

the ellipse is at ( Cx , Cy ) and the
major axis of the ellipse makes an
angle α  with the horizontal ?
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What infomation we  should  know before  
drawing  parabola  on  screen? 

How  to  draw  the   picture (Assume the axis 
of symmetry is parallel to X-axis and the 
vertex is at the origin.Furthermore,the 
parabola is open to the right)?
(1) The  parametric  equations:

(2) The  point (xi+1,yi+1) after knowing (xi,yi):

Homework:How about the apes that the 
parabola above is  at (Cx,Cy)  and the axis  
of symmetry makes  an  angle  α with  the  
horizontal?
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What infomation we  should  know 
before drawing hyperbola on  screen?

How  to  draw  the   picture (Assume the
trsansverse axis is X-axis and the 
conjugate axis is Y-axis)?
(1)  The  parametric  equations:
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(2)  The  point (xi+1,yi+1)  after  knowing 
(xi,yi): 

Xi+1=a sec(θ+   θ)=a · 1/cos(θ+   θ)

=a 1
cosθ cos(   θ)-sinθ sin(   θ) =

ab/cosθ
b cos(   θ)-tanθ sin(   θ)

=
bXi

b cos(   θ)-Yi sin(   θ)

Yi+1=b tan(θ+  θ) = b(tanθ+b tan  θ)
1-tanθ tan  θ = b(Yi+b tan(   θ))

b-Yi tan(   θ)

No matrix form for this parametric equation.

Xi+1=a cosh(θ+   θ)=a(coshθ cosh θ+sinhθ sinh θ)
=Xi cosh θ+a/b Yi sinh θ

Yi+1=b sinh(θ+   θ)=b(sinhθ cosh θ+coshθ sinh θ)
=b/a Xi sinh θ+Yi cosh θ

[Xi+1 Yi+1 1]=[Xi Yi  1][ cosh ∆θ b/a sinh ∆θ 0
a/b sinh ∆θ cosh ∆θ 0

0                0             1
]
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(1) 

(2)

(3)

aijxiyj=0i+j<=n

i , j=0

(4)

Curve Tracing:
How  to sketch a Curve represented by a 

polynomial function?
f(x,y)=  Σ
(1) Find a initial point p on the curve.
(2) Determine a local approximate at p.
(3) Select a suitable step size and step

along the approximant.
(4) Refine the new point estimate to a

curve point.
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f(x,y) = x3 - y2 = 0 f'(x',y')=0

This process is not work for singular point. 
Consider the graph for f(x,y)=x3-y2=0 
near the origin point. It is hard to find an 
local approximate at the origin because it 
is not differentiable at this point. We have 
to do the curve desingularization. 

After the transformation x'=x and y'=y/x, we 
find a curve f' which is differentiable at 
the origin. Then, we can trace f' as 
described before and find new point 
(x',y'). After that, the new point on f can   
be calculated by x=x' and y=x'y'.
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9.  Curve Interpolation

Find an arbitrary curve which fits a set of 
data values is the problem of curve 
interpolation. 

Lagrange Polynomial:
Let (xi,yi), where i=0,...,n, are 2D points. 

We would like to find a curve passing 
through these points. Let this curve be:
fn(x) = y0L0,n(x) + ... + ynLn,n(x)
We hope that fn(xi) = yi, that is,

Li,n(xi)=1 and Li,n(xj) = 0 for j <> i
We can define Li,n(x) as:

Li,n(x) =                                =

Now, fn(x) can be written as:
fn(x) = 
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The degree of the polynomial is tied to the 
number of points used. If the number of 
the points increase, a higher degree 
curve will be found. The higher degree 
curve is not only excessive oscillation, 
but also numerical sensitivity.

Example: Use  a Lagrangian polynomial 
to interpolate the curve passing through 
(0,0), (1,2), (2,3),(3,5),(4,1)



Page 5

Page:17     東吳資訊科學江清水Curves

Piecewise Linear:
If accuracy is not a major concern, 

piecewise linear interpolation may be an 
appropriate solution.
f(x) = f(xi)+[f(xi+1)-f(xi)][(x-xi)/d] 

where xi <= x < xi+1 d = xi+1-xi

Example: Find the piecewise linear 
interpolation for the curve passing 
through the point (-1,1),(0,0) and (1,1).

X

Y

X3X2X1 X4 X5
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Piecewise Quadric:
Let (xi,yi), where i = 0, ... , 2n and xi<xj for 

i<j, are 2D points. We group three points 
to do the interpolation, so that n quadric 
curve will be produced. Consider the 
curve passing through three points 
(x0,y0), (x1,y1), (x2,y2). 
Let  f(x) = a2x2+a1x+a0,
from yi=f(xi), i = 0,1,2, we find three 
equations with three variables (a2,a1 and 
a0, unique solution in general case), so 
we find the curve.

X

Y

X3X2X1 X4 X5
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Example: Find the curve passing through 
the points (-1,1),(0,0) and (1,1). Find a 
circle passing through these three 
points. 

(1)   f(x)=a2x2+a1x+a0

1=f(-1)=a2-a1+a0

0=f(0)=a0

1=f(1)= a2+a1+a0

{ a2-a1=1
a2+a1=1

a0=0
a1=0
a2=1

(0,0)

(-1,1) (1,1)

∴ f(x)=x2

(2)The point (0,1) has equal to these 
three  points. So, the circle
x2+(y-1)2=1  passing through(-1,1)
(0,0) and (1,1). 

Notice that the lagrangian polynomial,piecewise linear
and piecewise quadric are the form of  y=f(x), such
as (1), and not the form of  f(x,y)=0, such as (2) 
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Hermit Interpolation
The procedure for defining a cubic curve, 

using  endpoints  coordinates and 
tangent vectors at the endpoints, is one 
form of Hermit interpolation.

Let this cubic curve be:
C(t) =  a3t3+a2t2+a1t+a0

We have C'(t) = 3a3t2+2a2t+a1

So   C(0)  =                       a0

C(1)  =   a3+  a2+ a1+ a0

C'(0) =                 a1

C'(1) = 3a3+2a2+ a1

We have 4 equations with 4 variables, and 
a unique solution can be found in 
general case.

a0=    C(0)
a1=                         C'(0)
a2= -3C(0)+3C(1)-2C'(0)- C'(1)
a3=  2C(0) -2C(1)+ C'(0)+C'(1)

C(t) =
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Let [T] = [t3,t2,t,1],  algebraic coefficients 
matrix [A] = [a3,a2,a1,a0]T,  geometric 
coefficients  matrix [G] = [C(0), C(1), 
C'(0),  C'(1)]T and  Hermit  matrix

[M]=

C(t) can be written in two form:
(1) Algebraic  form:

C(t) = [T][A]
(2) Geometric form:

C(t) = [T][M][G]
Example: Find the parametric cubic curve 

C(t), knowing that:
C(0)=(0,0,0);      C(1)=(2,2,2);
C'(0)=[1,0,0];     C'(1)=[1,0,0];

C'(0)

C'(1)C(1)

C(0)

y

z

x
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Find the matrix of geometric coefficients for 
a parametric cubic curve, knowing that:

for t = 0,  (2,20,2) is a point on the curve and C'(0) 
= (x1,0,4x1).
for t = 1, (10,20,2) is a point on the curve and C'(1) 
= (x2,0,-2x2).
for t = 0.5, (6,20,6) is a point on the curve.

Homework: (Anand P277, Ex4) A parametric cubic curve passes through the points 
(0,0),(2,4),(4,3),(5,-2), which are parametrized at t = 0,1/4,3/4, and 1, respectively. 
Determine the geometric coefficient matrix and the slope of the curve when t=0.5. 
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10.  Cubic Spline
From: Computer Graphics and Geometric 

Modeling for Engineers  --- Anand
The term "spline" in computer graphics 

and geometric modeling refers to the 
general piecewise parametric 
representation of geometry with a 
specified level of parametric continuity. 
The cubic spline is represented by a
picecewise cubic polynomial with 
second order derivative continuity at the 
common joints between segments.

Suppose there are m points P0,P1,...,Pm-1, 
We want to find the cubic spline curve 
passing through these points. Let the 
curve Ci(t) be the curve with Pi,Pi+1 as 
endpoints, as the picture show below:

Pi-1

Pi+1
Ci-1(t)

Ci(t)
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From the property of cubic spline, we 
have:

C''i-1(1) = C''i(0)
For the cubic polynomial expressed as:

Ci(t)=a3,it3+a2,it2+a1,it+a0,i

the second derivative is:

So, C''i-1(1) = C''i(0)  implies

Substituting a3, a2 values, we have:

Let  Pi and P'i represent Ci(0),Ci'(0) 
respectively, from the position continuity
Pi(1)=Pi+1(0), and the first derivate 
coincides P'i(1)=P'i+1(0),  the equation 
can be simplify as:
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Now, we have m-2 equations (1 equation 
for each internal joints) with m variables 
(P'0,P'1,...,P'm-1), two more constraints 
must be imposed on the cubic spline. 
Two commonly used constraints are:

Known end tangent vectors, P'0 and P'm-1.
Second derivatives at the endpoints P0 and Pm-1
both made equal to zero; this is referred to as a
natrual cubic spline.

In the first case,  the system of equations 
can be represented in matrix form as:

Solution of this matrix equation yields the 
values of all tangent vectors:

P'0
P'1
:          =
:

P'm-1
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In the second case, consider the second 
derivative of the curve C0(t):

C''0(t)=6a3,0t+2a2,0

At the point P0 (t=0), we have:
C''0(0)=2a2,0=0

From the value of a2,0, we derive the 
equation:

With the similar process, consider the 
second derivative of the curve Cm-2(t) at 
the point Pm-1 (t=1), we derive the 
equation:

The m equations in m unknowns can be 
represented in matrix form as:
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Example: Consider four 2D points
P0=(0,0), P1=(2,1), P2=(4,4), P3=(6,0)

with given tangent vectors 
P'0=[1 1] and P'3=[-1 1]

Determine the values of the tangent 
vectors at P1 and P2 needed for a cubic
spline interpolation.
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Example:Solve the problem in the 
previous example, using a natural cubic
spline. Calculate cubic spline values at 
t=1/3 and t=2/3 for each spline segment.
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Conics
Conics  are  commonly  described  in
(1)  implicit  form:

a20x2+a02y2+a11xy+a10x+a01y+a00 = 0
(2)  matrix  form:

Conic curves or sections are either central 
or noncentral. The central forms are 
those with a center, specifically the 
ellipse and the hyperbola. (A circle is a 
special case of an ellipse.) The parabola 
is the only noncentral conics.

Given specific values aij, how can we 
know whether it represents an ellipse, a 
hyperbola or a parabola (or degenerate 
forms)?

Consider the matrix form as:
(1/2)[X][A][X]T = 0   

Let's consider translation and rotation on 
this conic.
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Translation of  the conics :
The matrix form for the conic after the translation is:

(1/2)[X][Tr][A][Tr]T[X]T = (1/2)[X][A'][X]T = 0
where the translation matrix

[Tr] =

From [A']=[Tr][A][Tr]T, the elements in [A'] are:*

a20'= 
a02'= 
a11'= 
a10'= 
a01'= 
a00'= 

If the conic is central, the linear terms are eliminated 
or the center of the conic is translated to the origin.
That is:  

a10' = a01' = 0 

*Let Ri means the i-th row for [Tr], then [A']=[Tr][A][Tr]T =[Ri A Rj
T] 
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By solving a10' =  a01' = 0, we have:
[ m n ]               =[ ]

which may be written as [L] [M] = [Q]
If [L] is singular, the solution for [M] does 

not exist and the conic is noncentral, i.e. 
a parabola. Otherwise, a solution for [M] 
exists and the conic is central. 

If det[L] < 0, then the conic is a hyperbola.
If det[L] = 0, then the conic is a parabola.
If det[L] > 0, then the conic is an ellipse.

Example: Determine the type of conic 
described by:
2x2 - 72xy +23y2 + 140x - 20y + 50 = 0

or =
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Rotation of the conics : 
The matrix form for the conic after the rotation is:

[X][R][A][R]T[X]T = [X][A''][X]T = 0
where the rotation matrix

[R] =

From [A'']=[R][A][R]T, the elements in [A''] are:

If the axes of the conic are parallel to the 
coordinate axes, then the cross-product term 
a11xy is not present. 

What degree of the angle we should rotate so that 
a11'' = 0?

A =

a20"=

a02"=

a11"=

a10"=

a01"=

a00"=
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Conics in standard form:
For a central conic the standard form 

places the center of the conic at the 
origin with its axes aligned with the 
coordinate axes. 

For a noncentral conic, the standard form 
is with the axis of symmetry of the 
parabola coincident with the positive x-
axis, with the vertex at the origin and the 
parabola opening to the right.

If the conic is central, then it is placed in 
the standard form by a combination of 
translation and rotation. Translation 
followed by rotation yields:
[X][Tr][R][A][R]T[Tr]T[X]T = [X][A3'][X]T = 0

From [A3']=[Tr][R][A][R]T[Tr]T, the elements 
in [A''] are:
a20

3' =
a02

3'=
a11

3' =
a10

3' =
a01

3' =
a00

3' =
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Now, the standard form of  the conic can 
be written as:

/ α 0   0   \ / x \
[X][A3'][X]T =  [x y 1] |  0   β 0    | | y  |

\ 0   0   -κ / \ 1 /
Write out the matrix into implicit form, we 

have:

Let's systematically investiage the results 
for various values of α, β, and κ.

κ α    β                       Conics
= αβ>0
=    αβ<0
=    =    =
=    one of α,β = 0

>    >    >
>    <    <
>    αβ<0
> αβ=0

Page:35     東吳資訊科學江清水Curves

Example: Transform the following conic into 
standard form:
2x2 - 72xy +23y2 + 140x - 20y + 50 = 0

y

x

xm

ym

1 4 6

2

4

-1-4
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If the conic is noncentral (a parabola), the linear terms 
cannot both be eliminated. However, one of the 
linearly dependent terms along with one of the 
quadratic terms either in x or y can be eliminated.

Let consider the rotation (elimination a11) followed by a 
translation. That is:

[X][R][Tr][A][Tr]T[R]T[X]T = [X][A4'][X]T = 0
From [A4']=[R][Tr][A][Tr]T[R]T, the elements in [A4'] are:

a20
4' =

a02
4'=

a11
4' = 0

a10
4' = 

a01
4' = 

a00
4' =

Here, either a20
4' or a02

4' will be zero. We try to 
eliminate one of a10

4' and a01
4'.

a10
4' = 0 yield m =

a01
4' = 0 yield n =

What is the relation among a20
4',a02

4',a10
4', and a01

4'?  
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Assuming that the linear terms in y and 
the quadratic terms in x  are eliminated 
(a20

4' = a01
4' = 0), the standard form of  

the parabola can be written as:
/ 0    0   γ \

[A4'] =  |  0   β 0    |
\ γ 0   -κ /

Write out the matrix into implicit form, we 
have:

The final step to transform the  parabola 
into standard form is: 

Exercise: Given [A], draw a flow chart 
which identify the types of the conic 
represented by matrix [A].
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Summary of Conic Sections

Name       Equation     Conditions      Type         Sketch

Ellipse αx2+βy2=κ κ, α, β> 0 Central

(No sketch)

No sketch

Hyperbola αx2+βy2=κ β < 0< κ,α Central

Parabola
αx2+βy2=0
βx2+αy2=0

Noncentral

Empty set αx2+βy2=κ α,β < 0 < κ (Central)

Point αx2+βy2=0 α, β> 0 Central

Pair of lines αx2+βy2=0 β < 0 < α Central

Parallel lines αx2 = κ α , κ > 0 Central

Empty set αx2 = κ α < 0 < κ (Central)

'Repeated' line αx2 =0 Central
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Translation of the conics (m,n) units
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12. Bezier Curve

Bernstein Polynomialss
A Bernstein polynomial is defined by:

Bi,n(t) = Cn
iti(1-t)n-i 0 <= i <= n 

where n is the degree of the polynomial 
and Cn

i = n! / i!(n-i)!
Honer's method for Bernstein polynimials

can be:
Bi,n(t) = (1-t)nCn

iui u = t/(1-t);  0<=t<=1/2
Bi,n(t) = Bi,n(T) where T=1-t;    1/2<=t<=1

The properties for the Bernstein 
polynomial are:

(1) Partition of unity: B0,n(t)+...+Bn,n(t)=1

(2) Recursion:Bi,n(t) = (1-t)Bi,n-1(t)+tBi-1,n-1(t)
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(3) Derivative:(d/dt)Bi,n(t)=n[(Bi-1,n-1(t)-Bi,n-1(t))]

(4) Linear precision:

(5) Symmetric with respect to t and 1-t:
Bi,n(t) = Bn-1,n(1-t) 

(6) Degree elevation formula:
Bi,n(t)  = 

(7) Subdivision:Bn
i(ct) = ΣBj

n(c)Σn
j(t) 

(8) Product:
Bi,m(t)Bj,n(t) =
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(9) Integral:
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Bezier Curve
Bezier curves employ control points, that 

is, an ordered set of points (P0,P1,...,Pn) 
that approximate the curve. A Bezier
curve of degree n, specified by n+1 
control points, is a parametric function of 
the following form:

Cn(t) =
where the vectors Pi represent the n+1 
control points.  Bi,n(t) is the blending 
function for the Bezier representation.
The polygon G form by P0,P1,...,Pn is 
called the Bezier polygon or control 
polygon of the curve C(t). Sometimes we 
also write Cn(t) = B[P0,P1,...,Pn;t]=B[G;t] 
or, shorter, Cn=B[P0,P1,...,Pn]=BG.

Consider the Bezier curve with control 
points:   Pi = (i/n, 1)  for one i;

Pj = (j/n, 0)  for all j ¹ i;
Then

Cn(t) =
So, we can easily find the control points for 

the curve of Bernstein polynomial Bi,n(t).     

n

j=0
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0

1

0

1

1

1

1

Bi,5

Bi,4

B2,2B1,2B0,2

0

1

0

1

0

1

With the same idea, Bi,n(t) where n=4,5 
are:
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The de Casteljau Algorithm
We give a simple construction for the 

generation of a parabola; the 
straightforward generalization will then 
lead to Bezier curves. Let P0,P1,P2 be 
any three points in R2 (or R3), and let t 
be a real number. Construct

(1) P1
0(t) = (1-t)P0 + tP1

(2) P1
1(t) = (1-t)P1 + tP2

(3) P2
0(t) = (1-t)P1

0(t) + tP1
1(t)

Inserting the first two equations into the 
third one, we obtain a quadratic 
expression in t and so P2

0(t) traces out a 
parabola as t varies from - to      .

The above construction consists of 
repeated linear interpolation.

P0

P1 P2

P1
0

P2
0

P1
1
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This algorithm can be generalized to generate a 
polynomial curve of arbitrary degree n:

de Casteljau algorithm:
Given: P0,P1, ... ,Pn are points in R3 and t is a real 

number.
Set Pr

i(t) = (1-t)Pr-1
i(t)+tPr-1

i+1(t)  where
r = 1,...,n and i = 0,...,n-r and P0

i(t)= Pi. 
Then Pn

0(t) is the point with parameter value t on 
the Bezier curve generate by the control points 
P0,P1, ... ,Pn.

The intermediate coefficients Pr
i(t) are conveniently 

written into a triangular array of points, the de
Casteljau scheme:       

P0 P1 P2 P3        

P1
0      P1

1      P1
2

P2
0       P2

1

P3
0

P0

P1

P2

P3
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Some properties of Bezier curves
1 Convex hull property: (the curve is inside

the control polygon).  This follows, since
for 0<= t<=1, the Bernstein polynomials 
are nonnegative, and their sum is equal to 
one.
Let C and C' are two Bezier curves and G 
and G' are their control polygons. Do 
these two curves intersect if G and G' are 
not intersect? How about G and G' do 
intersect? 

2 Endpoint interpolation: (the curve passes 
the endpoints of the control points). 

3 Symmetry:(B[P0,P1,...,Pn ; t]=B[Pn,...,P1,P0 ; 1-t])
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4 Pseudo-local control: If we move only one of the 
control polygon vertices, say pi, then the curve is 
mostly affected by this change in the region of 
the curve around the parameter value i/n. This 
makes the effect of the change reasonably 
predictable, although the change does affect the 
whole curve.

5 The derivative of a Bezier curve: 
(d/dt)Cn(t) =

P1-P0

P2

P0

P1

P3

P2-P1

P3-P26. Degree Elevattion
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What we should notice if we want 
construct  a piecewise Bezier curve 
which has C1 continuity?

What we should do if we want construct a 
closed curve?

Example: Given two Bezier curves defined 
by:    B[(2,3,4),(3,1,5)(x,y,z),(3,4,3)]

B[(3,4,3),(2,6,0),(5,7,5)(5,2,3)]
Establish the algebraic conditions that 
x, y, z must  satisfy  to  ensure  C1 

continuity. 

Page:50     東吳資訊科學江清水Curves

P0

P1

P2

P3

P4=q0

q1

q2

q3

q4

P0

P1

P2

P3=q0

P4=q0

q1

q2

q3

q4

P0 = Pn

Picture from: Anald's book.

P1 P2

P3P0=P4

P1 P2

P3

P4

P0=P5

Piecewise Bezier Curve
C0 continuity: pn=q0

C1 continuity: pn-1,pn=q0,q1 colinear.
C2 continuity: pn-2,pn-1,pn=q0,q1,q2 colinear.
Picture from: Mortenson's book.

Closed Bezier Curves
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Matrix form for Bezier curve

Bezier curve B[P0,P1,...,Pn] can be 
conveniently expressed in matrix form.
Cn(t) = B[P0,P1,...,Pn] 

= [B0,n  B1,n ... Bn,n ]  [P0 P1 ... Pn]T

= [tn tn-1 ... t  1] [mij] [P0 P1 ... Pn]T

where mij = 

The  cubic Bezier curve can be rewritten in 
matrix form as: 

C3(t)  = B[P0,P1,P2,P3] 
= [B0,3  B1,3 B2,3 B3,3 ]  [P0 P1 P2 P3]T

= [(1-t)3 3t(1-t)2 3t2(1-t) t3][P0 P1 P2 P3]T

= [t3 t2 t 1]                          [P0 P1 P2 P3]T

Page:52     東吳資訊科學江清水Curves

Cubic Bezier Curves

Cubic Bezier curves and their modification:
(a) Moving point p1 to p1

* "pulls" the curve 
toward that vertex.

(b) By specifying multiple coincident points 
at a vertex, we pull the curve in closer 
and closer to that vertex.

From: Mortenson's book

P1

P0

P2

P1
*

P0

Pi Pn
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13 B-Spline Curves 
B-spline curves are similar to Bezier

curves in that a set of blending functions 
combines the effects of n+1 control 
points Pi given by:

C(t) = Σ Ni,k(t)Pi 

Compare with Bezier curves, the most 
important difference is the way the 
blending function Ni,k(t) are formulated.

Ni,1(t) = 1  if ti <= t < ti+1

= 0  otherwise
and

(t-ti)Ni,k-1(t) (ti+k-t)Ni+1,k-1(t)
Ni,k(t) = ---------------- + ------------------

ti+k-1 - ti ti+k - ti+1

where k controls the degree (k-1) of the 
resulting polynomial in t and thus also 
controls the continuity of the curve. 
(What number control the degree of the
Bezier curve?) The ti are called knot 
values and [t0 t1 ... tn+k] are called knot 
vector. They relate the parametric value 
t to the Pi control points. 

n

i=0
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The knot vector [t0, t1, ... ,tn+k] can be 
classified as:
(1) Uniform/periodic

A uniform knot vector has equispaced ti values, so 
that ti - ti-1 = a for all intervals, and a is a real 
number.

e.g. 

(2) Nonperiodic
A nonperiodic or open knot vector has repeated 

knot values at the ends with multiplicity equal to 
the order of the function k and internal knots 
equally spaced. 

e.g.

(3) Nonuniform
If the repeated knot values at the ends with

multipility is not equal to the order of the function 
k,or the internal knots are not equally spaced, the 
knot vector is said to be nonuniform. 

e.g.

Since the knot vectors influence the shape 
of the B-spline, it can be said, in 
general, that B-spline curves have this 
classification.
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Nonperiedic B-spline Curve
For an open curve, the ti are:(define 0/0=1)

ti = 0            if i < k
ti = i-k+1      if k <= i <= n
ti = n-k+2     if i>n

with             0 <= i <= n+k

The range of the parametric variable t is
0 <= t <= n-k+2

Let's see how these equations compute the 
blending functions Ni,k for k =1,2 and 3.

Given six control points (n=5) and k=1, we 
find that:

0 £ i £ 6       and       0 £ t £ 6
[t0 t1 t2 t3 t4 t5 t6]  =  [ 0 1 2 3 4 5 6 ]

N0,1(t)=

N2,1(t)=

N5,1(t)=

N3,1(t)=

N4,1(t)=

N1,1(t)=
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0
N1,1(t)

0

1

N2,1(t)

0

1

N0,1(t)

0

1

N3,1(t)

0

1

N4,1(t)

0

1

N5,1(t)

1

0 1 2 4 5 6

0 1 2 4 5 6

0 1 2 4 5 6

0 1 2 4 5 6

0 1 2 4 5 6

0 1 2 4 5 6
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If we apply these blending functions to any 
set of six control points Pi, i=0,...,5, what 
kind of curve we find?

Next, for the Ni,2(t) blending functions with 
n=5 and k=2, we find that

£ i £ and         £ t  £
[t0 t1 t2 t3 t4 t5 t6 t7]  =  [                           ]

N0,1(t) =                  N1,1(t) = 

N2,1(t) =                  N3,1(t) = 

N4,1(t) =                  N5,1(t) = 
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N0,2(t) = (1-t)N1,1(t)
N1,2(t) =       tN1,1(t) + (2-t)N2,1(t)
N2,2(t) = (t-1)N2,1(t) + (3-t)N3,1(t)
N3,2(t) = (t-2)N3,1(t) + (4-t)N4,1(t)
N4,2(t) = (t-3)N4,1(t) + (5-t)N5,1(t)
N5,2(t) = (t-4)N5,1(t)

If we now apply these blending functions to 
any set of six control points Pi,i=0,....,5 
what kind of curve we find? The curve is 
C0, C1 or C2 curve?

C(t) = ΣNi,kPi = (1-t)P0 + tP1 0 £ t < 1
(2-t)P1 +(t-1)P2 1 £ t < 2
(3-t)P2 +(t-2)P3 2 £ t < 3
(4-t)P3 +(t-3)P4 3 £ t < 4
(5-t)P4 +(t-4)P5 4 £ t < 5

It contains line segments connecting
P0,P1,P2,P3,P4 and P5

So, it is C0 curve.
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0
N1,2(t)

0

1

N2,2(t)

0

1

N0,2(t)

0

1

N3,2(t)

0

1

N4,2(t)

0

1

N5,2(t)

1

0 1 2 3 4 5

3 4210 5

543210

543210

543210

543210
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Finally, for the Ni,3(t) blending functions with 
n=5 and k=3, we find that:

£ i £ and      £ t £
[t0 t1 t2 t3 t4 t5 t6 t7 t8]  =  [                               ]

N0,1(t) =                  N1,1(t) = 

N2,1(t) =                  N3,1(t) = 

N4,1(t) =                  N5,1(t) = 

N0,2(t) = 0
N1,2(t) = (1-t)N2,1(t)
N2,2(t) =       tN2,1(t) + (2-t)N3,1(t)
N3,2(t) = (t-1)N3,1(t) + (3-t)N4,1(t)
N4,2(t) = (t-2)N4,1(t) + (4-t)N5,1(t)
N5,2(t) = (t-3)N5,1(t)
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N0,3(t) = (1-t)2N2,1(t)
N1,3(t) =(1/2)t(4-3t)N2,1(t) + (1/2)(2-t)2N3,1(t)
N2,3(t) =(1/2)t2N2,1(t)+(1/2)(-2t2+6t-3)N3,1(t)

+(1/2)(3-t)2N4,1(t)
N3,3(t) =(1/2)(t-1)2N3,1(t)+(1/2)(-2t2+10t-11)    

N4,1(t)+(1/2)(4-t)2N5,1(t)
N4,3(t) =(1/2)(t-2)2N4,1(t)+(1/2)(-3t2+20t-32)

N5,1(t)
N5,3(t) =(t-3)2N5,1(t)
If we now apply these blending functions to 

any set of six control points Pi,for i = 
0,.....,5  the curve we find is:
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0
N1,3(t)

0

1

N2,3(t)

0

1

N0,3(t)

0

1

N3,3(t)

0

1

N4,3(t)

0

1

N5,3(t)

1
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A nonperiodic or open knot vector has 
repeated knot values at the ends with 
multiplicity equal to the order of the 
function k and internal knots equal 
spaced. For example, assuming a 
control polygon with four vertices:
Order    No. of knots Nonperiodic
(k)        (m+1=n+k+1)  Knot Vector
2                    6             [0 0 1 2 3 3]
3                    7             [0 0 0 1 2 2 2]
4                    8             [0 0 0 0 1 1 1 1]

From: Anand's book.
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Comparison between Bezier and
nonperiodic B-spline Curve:(The
Bezier representation is a special case 
of a nonperiodic B-spline, where the 
number of vertices used equal the 
order of the curve. The knot vector, in 
this case, becomes [0 ... 0 1 ... 1] with 
k 0's and 1's)

1. End point interpolation:

2. Local control of the curve:
Each segment of a B-spline curve is 
influenced by only k control points, and 
conversely each control point 
influences only k curve segments.

3. Convex hull property:

4. Degree of the curves are decided by:

5. Continuity:
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P0

P1

P2

P3

P4

P5

P6P3'

Local control for a quadratic (k=3) nonperiodic
B-spline curve.

Convex hull property of Bezier curve and 
strongly convex hull for (nonperiodic) B-spline
curve.

P0 P6

P1

P2

P3

P4

P5

P0

P1

P2

P3

P4

P5

P6
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Uniform B-spline Curve
For  a  uniform  B-spline curve, ti = i with 

0<= i<=n+k. The range of the parametric 
variable t is (k-1) <= t <= (n+1) where k 
is the order of the curve, n+1 is number 
of the control points. The number of 
knots can be calculate as n+k+1.

Notice that the range of the parametric 
variable t is (k-1)<=t<=n+1.

Let's see how these equations compute 
the blending function Ni,k for k=1,2 and 3.

Given six control points (n=5) and k=1, we 
find that:
0<=t<=6 and ti=i for all i where 0<=i<=6
Ni,1(t) =    1    for  i<=t<i+1

0   eleswhere

0

1
N0,1(t)

i i+1

Ni,1(t)
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If we apply these blending functions to any set of 
six control points Pi, i=1,...,6, what kind of curve 
we find?

Next, for the Ni,2(t) blending functions with n=5 and 
k=2, we find that:

1<=t<=6 and ti=i for all i where 0<=i<=7
Ni,1(t) =    1    for  i<=t<i+1    (0<=i<=6)

0   eleswhere
Ni,2(t)=(t-ti)Ni,1(t)+(ti+2-t)Ni+1,1(t)

=(t-i)Ni,1(t)+(i+2-t)Ni+1,1(t)  (0<=i<=5)

If we now apply these blending functions to any set 
of six control points Pi, what kind of curve we 
find? The curve is C0, C1 or C2 curve?

0

1

i i+1

Ni,2(t)

i+2
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0

1

N0,2(t)

0

1

N2,2(t)

0

1

N4,2(t)

0

1

N1,2(t)

0

1

N3,2(t)

0

1

N5,2(t)

Domain

0           1           2           3             4            5             6           7    

0           1           2           3             4            5             6           7    

0           1           2           3             4            5             6           7    

0           1           2           3             4            5             6           7    

0           1           2           3             4            5             6           7    

0           1           2           3             4            5             6           7    
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Finally, for the Ni,3(t) blending functions 
with n=5 and k=3, we find that:

2<=t<=6 and ti=i for all i where 0<=i<=8
Ni,1(t) =    1    for  i<=t<i+1    (0<=i<=7)

0   eleswhere
Ni,2(t)=(t-ti)Ni,1(t)+(ti+2-t)Ni+1,1(t) (0<=i<=6)

=(t-i)Ni,1(t)+(i+2-t)Ni+1,1(t) 
Ni,3(t)=(1/2)(t-ti)Ni,2(t)+(1/2)(ti+3-t)Ni+1,2(t)

(0<=i<=5)
=(1/2)(t-i)2Ni,1(t)
+(1/2)[-2t2+(4i+6)t-(2i2+6i+3)]Ni+1,1(t) 
+(1/2)(i+3-t)2Ni+2,1(t)

Notice the range of the domain t.

0

1

i i+1

Ni,3(t)

i+2 i+3
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Periodic B-spline and nonperiodic B-spline

Notice the difference between periodic  B-
spline and nonperiodic B-spline. Notice 
also that neither the k=3 curve nor the 
k=4 curve passes through any of the 
control points in periodic B-spline.

Picture From Moterson's book. 

P0

P5

P4

P3

P2P1

Nonperiodic B-spline curve (n=5, k=3)

P0

P5

P4

P3

P2P1

Period B-spline curve (n=5, k=3; n=5,k=4)
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Uniform quadratic B-splines
Let k=3, we have

Ni,1(t)  =  1      for   i<=t<=i+1
0      elsewhere

Ni,2(t) = (t-i)Ni,1(t)+(i+2-t)Ni+1,1(t)
Ni,3(t) = (1/2)(t-i)2Ni,1(t)

+(1/2)[(t-i)(i+2-t)+(3+i-t)(t-i-1)]Ni+1,1(t) 
+(1/2)(i+3-t)2Ni+2,1(t)

Let C(t) be the uniform quadratic B-spline
curve with n+1 control points. That is,
C(t) =  N0,3(t)P0 + ... + Nn,3(t)Pn

we want to find the expression C(t) for the 
interval i+2<=t<i+3, call it Ci(t)
Ci(t)=  (1/2)(i+3-t)2Pi

+ (1/2)[(t-i-1)(i+3-t)+(4+i-t)(t-i-2)]Pi+1

+  (1/2)(t-i-2)2Pi+2

There are computational advantages to 
reparametrizing the interval so that 
0<=t<1 and then identifying the interval 
by subscripting C(t) as Ci(t) for the ith 
interval. 
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To reparametrize the abouve equation, 
replace t by t+i+2, so that
Ci(t) = (1/2)[(1-t)2Pi+(-2t2+2t+1)Pi+1+t2Pi+2

We can easily rewrite the equation into 
matrix notation:

Ci(t) = (1/2)[t2 t 1]                 [Pi Pi+1 Pi+2]T

The analogous form for cubic B-splines
(k=4) is:
Ci(t) =  (1/6)TMP   where

T  =  [t3 t2 t 1]
/  \

M =  | |
|   |
\ /

P  = [Pi Pi+1 Pi+2 Pi+3]T  

0<=t<=1 and  0<=i<=n-3 for open curves
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Closed Periodic B-spline Curves
Uniform B-splines are well suited to represent closed curves. 

All that is needed is a change in the number of segments 
used. We modify the previous equation as:

Ci(t) =  (1/6)TMP'   where
/  Pi mod (n+1) \

P' =  |   Pi+1 mod (n+1) |
|   Pi+2 mod (n+1) |
\ Pi+3 mod (n+1) /

0<=t<=1 and  0<=i<=n for closed curves
(Notice that the number of curves change from n-2 to n+1)
Example: Find the starting and ending locations for a 

uniform quadratic B-slpine segment.
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4
2

P0:(-r,-r) , P1:(-r,r) , P2:(r,r) , P3:(r,-r)

P0

P1 P2

P3

Example: Use four control points to
approxiate a circle by a closed, uniform, 
quadratic B-spline. Check the error 
incurred in the approximation at t=0.5 in 
the first segment.

Example: Use a uniform quadratic B-
spline curve with four control points to 
describe an ellipse whose major axis 
has a length of four units and minor axis 
two units. 

Page:75     東吳資訊科學江清水Curves

Conversion Between Representations
A freeform cubic curve is described by 

equation of the form:
x = TMP 

where T = [t3 t2 t 1], P is the matrix of control 
points (or geometric coefficients) and M is 
the basis matrix. Corresponding values of 
y and z can be similarly found. 

To change from one type of representation 
to another, the equation x = TMfPf = TMtPt
yields Pt = Mt

-1MfPf

Example: Given a cubic Bezier curve 
represented by the control point P1(-6,0, 
0), p2(-3,4,0),p3(3,-4,0) and P4(6,0,0), find:

(a) The control points that would reproduce 
this curve as a uniform cubic B-spline.

(b) The geometric coefficient matrix that 
would reproduce this curve as a Hermit.
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Rational Curves
The term "rational" means these functions 

are obtained by the "ratio" of two 
polynomials. They are invariant under 
projective transformations. That is, the 
perspective projection of a rational curve 
is itself a rational curve, which is not true 
for the nonrational or integral curves. 
The rational polynomial functions 
represent the conics and freeform in one 
form.

Both Bezier and B-spline curves posses a 
rational form.

Bezier B-spline
Nonrational Q(t) = Σ Bi,n(t)Vi                P(t) = Σ Νi,n(t)Vi

(Integral)
Σ Bi,n(t)wiVi            Σ Νi,n(t)wiVi

Rational Q(t) = ---------------- P(t)= --------------
Σ Bi,n(t)wi                           Σ Νi,n(t)wi
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The perspective projection of a nonrational
(or integral) curve is not a nonrational (or 
integral) curve. Why? 

Consider the Bezier formulation in 4D 
homogeneous space, this would result in 
the expression:

Qw(t) = Σ Bi,n(t)Vw
i

where
Qw(t) : points on the curve in 4D

homogeneous space --
coordinates (wx(t),wy(t),wz(t),w)

Bi,n(t) : standard Bezier blending function
Vw

i : control points in 4D homogeneous
space

The 3D projection of the 4D control points
Vw

i is Vi = Vw
i /wi, where wi is the weight 

for the control point Vi. Analogously, the 
points Q(t) on the curve can be written in 
rational form as the projection from 4D to 
3D space:
Q(t) = Qw(t)/w(t) = (ΣBi,n(t)wiVi )/(ΣBi,n(t)wi)

Page:78     東吳資訊科學江清水Curves

If wi = 1 for all i, Q(t) is a nonrational curve. 
In some other case, Q(t) is a rational 
curve. 

If wi >= 0 for all i, the convex hull property 
for the curve Q(t) are still valid. Q(t) also 
has end point interpolation property.

If wi-1 and wi+1 are fixed, an increase in the 
value of Wi will pull the curve toward Vi.

Rational curves has been gaining popularity 
in CAD, and today many commerical
systems use these representations which 
include Bezier and all forms of B-splines
(uniform/periodic, nonperiodic and
nonuniform).  The most common scheme, 
however, appears to be the nonuniform
rational B-spline, commonly referred to as 
NURB, popular because the NURB 
representation includes all B-splines and
Bezier curves. It has the capability of 
representing a wide range of shapes, 
including conics, using one cannonical
form.  (From Anand, "Computer Graphics 
and Geometric Modeling for
Engineerings", 1993)
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Bezier curves are said to lack local control.
Nonperiodic B-spline exhibiting local 

control.
In rational curve, the increase in the value 

of wi will pull the curve toward Vi. 
Picture from Anand's book.
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Nonperiodic cubic rational B-spline and
nonuniform cubic rational B-spline.

Picture from Anand's book.
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(a)                             (b)

(c)

(a) A nonrational curve with a change in 
one control point.

(b) A nonrational curve  with a change in 
one weight.

(c) A rational B-spline curve whose weight 
of the indicated control point is changed. 
The curve is only affected locally.

Picture from Farin's book.
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Conics as Rational Bezier
A conic section in R2 is the projection of a 

parabola in R3 into a plane. 

Theorem: Let Q(t) in R2 be a point on a 
conic. Then there exist numbers w0,w1,w2
in R2 and points b0,b1,b2 in R2 such that

w0b0B0,2(t)+w1b1B1,2(t)+w2b2B2,2(t)
Q(t) = ---------------------------------------------

w0B0,2(t)+w1B1,2(t)+w2B2,2(t)
Proof:

Gerald Farin, "Curves and Surface for 
Computer Aided Geometric Design", 
p179,  Academic Press, 1988.

We call the points bi the control polygon of 
the conic Q; the number w i are called 
weights of the corresponding control 
polygon vertices. Thus the conic control 
polygon is the projection of the control 
polygon with vertices [wibi wi], which is 
the control polygon of the 3D parabola 
that we projected onto C.
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Conic sections: in the two shown 
examples, w0=w1=1. As w1 becomes 
larger, the conic is "pulled" towards b1.

Picture from Farin's book. 
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Conics as Rational B-spline

What value of k and n of rational B-spline
are best suited to represent the conics? 

Defining the quadratic rational B-spline by 
three control points, with 0 <= t <= 1 and 
a knot vector [t] = [0 0 0 1 1 1], yields:

w0b0N0,3(t)+w1b1N1,3(t)+w2b2N2,3(t)
P(t) = ---------------------------------------------

w0N0,3(t)+w1N1,3(t)+w2N2,3(t)
This equation defines a family of conics, 

with each conic passing through b0 and 
b2, and tangent to the line segment from 
b0 to b1 and from b1 to b2. 
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The value of w1 determines what conic 
type will be obtained, such that:

w1 = 0      line segment
0 <  w1 < 1      elliptic segment

w1 = 1      parabolic segment
w1 > 1      hyperbolic segment

Picture from Anand's book.
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Curve Manipulations
1. Display

2. Transformation
3. Evaluating points on curves

4. Segmentation
Segmentation or curve splitting is defined as replacing 

one existing curve by one or more curve segments of 
the same curve type such that the shape of the 
composite curve is identical to that of the original 
curve.

5.57                                                            5.58

Segment of a circle  for modeling purposes. Reparametrization of a segmented curve.

?
Curve
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5. Trimming
Trimming is mathematically identical to 

segmentation. The only difference between the 
two is that the result of trimming a curve is only 
one segment of the curve bounded by the 
trimming boundaries. 

Trimming can truncate or extend a curve.  

5-59

(a)  Truncated curve             (b) Extended curve

6. Blending
The blending problem can be stated as: Given two 

curve segments, find the conditions for the two 
segments  to be continuous at the joint. 

7. Offset curve (2D) and      surface
Offset curve of a specified curve f is the curve which 

has equal distance to f.    

8. Voronoi curve (2D)
In 2D, Voronoi curve is the curve which has equal 

distance to two or more other curves. 

9. Curve/Curve intersection

From Zeid's book.
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Computer Aided Geometric Design

?

!

?

Curve

Surface

Solid

Real world object

?

??

?? ?
? ?

?
?
? ?
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CAGD
From:  A survey of curve and surface methods in CAGD         

--- Bohm, Farin and Kahmann
CAGD - short for Computer-Aided Geometric Design - is  

concerned with the approximation and representation 
of curves and surfaces that arise  when  these  objects  
have  to  processed  by  a  computer.

Designing  curves  and  surfaces  plays  an  important  role 
in the  construction  of  quite  different  products  such  
as  car  bodies,  ship  hulls,  airplane  fuselages  and  
wings,  propeller  blades,  shoe  insoles,  bottles,  etc, etc, 
but  also  in  the  description  of  geological,  physical  
and  even  medical phenomena.

Before the advent of computers, these design problems 
were dealt with by means descripitive geometry. A  
surface was defined by a set of curves, usually plane  
sections  plus  some  characteristic  feature  lines. This 
information was sufficient to  manufacture  templates, 
and  the  templates  were  used  to  produce  (wooden) 
master  models.  The  stamps  and dies were obtained 
from the master models by means of copymilling.

In the late fifties, it became possible to drive these milling  
machines by "numerical control".  i.e.  the machining 
instructions could be generated by a computer 
program.  In  order  to  fully exploit  this  capability,  it  
was  necessary  to  store  the  surface  definition  in  a  
computer-compatible  form. The  problem  thus  arose 
how to translate existing surface definitions into a 
"computerized" format. i.e. how to design a 
"mathematic model".




