Announcements

® Project 2 due next Monday

® Next Tuesday 1s review session;

® Midterm 1 on Wed., EE 129, 8:00 - 9:30pm
® Project 3 to be posted Oct. 3 (next Wed)

® Preparing for the Midterm:

® Review Chapters 3-6 of Part 1 and chapters 8-9 of Part 2 of the textbook.
Pay attention to the examples and exercises

® Review the lecture slides, especially the clicker questions. If in doubt,
run the programs

Python Boot Camp!...?
® FAQ
® Quick review of Libraries
® Sequences

® Index 1nto a sequence
® [] notation

® Slicing and other operations

Function calls as conditions?

® We have seen a lot of conditionals like:
® fx==3: or ify: or if (x<3)and (y%3 ==0):

® But what about something like this?
1f myFun(x):
This 1s equivalent to writing:
z = myFun(x):

if z:

So 1t 1s just fine

[ibraries

® What 1s the difference between:
1. import /Zibrary
2. from /library import *

® Both provide you with a mechanism to utilize additional functionality in your
program

® Version 1 requires referencing library functions using the object notation:
<library>.<function>(<parameters>)
import math
math.sqrt(x)

® Version 2 obligates you to use the function name without library reference:
from math import *

sqrt(x)
® [f you mix the two Python throws an error

[ibraries

>>> from math import *
>>> math.sqrt(4)
Traceback (most recent call last):
File "<pyshell#153>", line 1, in <module>
math.sqrt(4)
NameError: name 'math' 1s not defined

>>> 1mport graphics

>>> win = GraphWin()

Traceback (most recent call last):

File "<pyshell#1>", line 1, in <module>
win = GraphWin()
ameError: name 'GraphWin' 1s not defined

Returns

® [f a function does not specify a value to return it returns a
special python value: “None”

® Just because a function Aas a return statement 1n 1t, does NOT’
mean 1t will return a value 1n every case

>>> def example(x):
if x < 10:
print(x)
else:
return(30)
>>> 7 = example(10)
>>> print(z)
30
N >>> 7 = example(9)

Sequences 1n Python

® So far, we know of three types of sequences in Python
® Strings: “Hello World”
® Ranges: range(10)
® [ists: [0,1,2,3,4,5] list(range(10))

Sequences

® Range: stores multiple nfegers consecutively 1n memory
® String: stores multiple characters consecutively in memory
® List: stores multiple elements consecutively in memory

® These structures provide means to access individual values.

® Ranges, Lists and Strings are indexed from O up

Indices (plural of 1ndex)

® Indices provide us a quick mechanism for accessing a grven
element that 1s contained within a sequence

| | Notation

® a[k] : gives a name to the £™ element of a list

® = “Sally”
® alk] 1sequal to the k+1 character of Sally

® a = list(range(0, 10))
® a[k] 1s equal to the k+1 number 1n the range of 0 to 9

Lists: Examples

® a = list(range(0, 10))
® print(a) [0,1,2,3,4,5,6,7,8,9]
® print(a[3]) 3

~ ® print(a) [0,1,2,3,4,5,6,7,8,9]

[ets Make 1t More Concrete

a=10
b = range(0,5) g 10
c = “Sally” b

b[0]
b[1
b[2
b[3]
b[4
c[0
c[1]

O N>t |[— O

Negative Indices

® What happens if we use a negative index?
® Do we get an error?

X = range(10)

print(x[-1]) < this will print 9
print(x[-10]) < this will print O
print(x[-11]) < Error!

>>> print(x[-11])
Traceback (most recent call last):
. File "<pyshell#173>", line 1, in <module>
— print(x[-11])
s IndexError: range object index out of range

[ets Make 1t More Concrete

a=10
b = range(0,5) g 10
c = “Sally” b

b[-5
b[-4
b[-3
b[-2
b[-1
c[-5
c[-4

O N>t |[— O

Lists: Examples

® a = list(range(0, 10))
® print(a) [0,1,2,3,4,5,6,7,8,9]
® print(a[-3]) 7

~ ® print(a) [0,1,2,3,4,5,6,7,8,9]

[1sts

® The [] can be used to index into an list, range, or string. For

example:

i=0 i=0

x = list(range(0,10)) X = range(0,10)

while i< 10: while i< 10:
print (x[i]) print (x[i])
i=i+1 i=i+1

Strings

® The [] can be used 1n the same way on a string. For example:

i=0
X = “This is a string”
whilei< 16:
print (x[i])
I=i+1

The len() function

® The len function gives you the “length” or number of
elements 1n a sequence

® Strings: number of characters in the string
® Ranges: number of integers in the range

® [sts: number of elements 1n the list

>>> len(range(10))
10
. >>>len([0,1,2,3,4,5])
. 6
— >>> len("this 1s a string") -

Detensive Coding

® These three examples suffer from the same defect!
® The while loop 1s Aard coded!

i=0 i=0
x = list(range(0,10)) X = “This is a string”
whilei< 10 : whilei<17:
print (x[i]) print (x[i])
i=i+1 i=i+1

I | ERROR! .

The len function

® A better way to write the previous code:

i=0

X = “This is a string”

while i < len(x):
print (x[i])
I=i+1

Clicker Question: Are these two
functions equivalent?

def printByCharacter(str) def printByCharacter(str)

1=0 1=0
while i < len(str): while i < 16:
print (str[i]) print (str[i])
I=i+1 i=i+1
A: yes

B: no

Why 1s this important?

® We want to write general purpose functions

def printByCharacter(str)
i=0

while i < len(str):
print (str[i])
i=i+1

Typical indexing mistakes

® Undershooting the bounds

® 3= "hello” a[-6]
® (Qvershooting the bounds

® 3= “hello” a[5]
® Off by one

® a[0] vs a[l]

® By convention we use 0-based indexing
® a= “hello”

® print(a[0])

® print(a[l])

Homework

® Study for the exam!

® Work on Project 2

Python Boot Camp

® String Slicing

® Lists
® Heterogeneous vs homogenous
® Assignment to lists allowed

® [ists containing other sequences

CQ: Are these programs

equivalent?
i=0 x = “This is a string”
x = “This is a string” fory in x:
while i < len(x): print (y)
print (x[i])
=1+ 1

A: yes

What 1s going on here?

X = “This is a string”
foryin x:
print (y)

N N fen ull Fo)

Under the hood we are doing something
similar to:

CQ: Are these programs

equivalent?
i=0 X = “This is a string”
x = “This is a string” i=0—len(x)
while i < len(x): while i < 0O:
print (x[i]) print (x[i])
i=i+1 i=i+1

A: yes

Slicing

In addition to selecting a single value from an array or string the
[] can be used to select values 1n a special range.

X = “This is a string”
print (x[0])

print (x[0:5])

print (x[:3])

print (x[3:])

print (x[-1:])

print (x[:-1])

4

Slicing

x = “This is a string”
print (x[0])
-
print (x[0:5])
This
print (x[:3])
Thi
print (x[3:])
s is a string
print (x[-1:])
g
print (x[:-1])

This is a strin

[1sts

® We can also store more complex elements into an list. For
example, consider these two cases:

x = “ABCD”

y = [“A”,)"B”,"C”,”D"]
print (x)

ABCD

print (y)
[A, B, 'C, D]

[1sts

® vy 1s an example of a list of strings. Each element 1s a string. We
could expand 1t as follows:

y - [IIABCD”’ ”BCD”’ ”CD”’ ”D”]

® As you can see each element can be a different length. They can
also be different types:

y — [IIABCD”’ [1’2’3]) ”CD”’ ”D”]

[1sts

® Suppose we wanted to extract the value 3

y = [”ABCD”, [1’2’3]) ”CD”, ”D”]
y[11[2]

® The first set of [] get the array 1n position 1 of y. The second []
1S selecting the element 1n position 2 of that array. This 1s equiv.
to:

Assigning to Lists

® The [] syntax not only allows us to access a given element, 1t
lets us access that memory location

® Namely, we can assign to that location
® b[2] =100
® print(b[2])
® b[2] =b[2] - 50
® print(b[2])

o
—_
-

Strings are Immutable

® What do we mean by immutable?
® We cannot assign to strings like we do to lists

i=0
X = “This is a string”
X[i] = ‘b’

Ranges are Immutable

® What do we mean by immutable?
® We cannot assign to strings like we do to lists

i=0
X = range(10)
X[i] = ‘b’

Operations on Lists

® Just like we can concatenate strings we can concatenate lists
® oprint ([1, 2, 3] + [4, 5, 6])
® Will print: [1, 2, 3, 4,5, 6]

® Just like we can s/ice strings we can also slice lists
® b=[1,2,3,4,5,6]
® print (b[2:5])
® Will print [3, 4, 5]

Advanced List Operations

® We once again use the object.method() syntax
® This time the list 1s the object

® Notice the list type supports different methods from the string type
. C:[1’2’39495]

® c.append(6)

® Results 1in ¢ having an additional element:
. [17 27 3, 47 57 6]

Announcements

® Amazon will update Part 1 of our e-Textbook. Instructions are on the
homepage.

® Next Tuesday 1s review session;
® Midterm 1 on Wed., EE 129, 8:00 - 9:30pm
® Project 3 to be posted Oct. 3 (next Wed)

® Preparing for the Midterm:

® Review Chapters 3-6 of Part 1 and chapters 8-9 of Part 2 of the textbook.
Pay attention to the examples and exercises

® Review the lecture slides, especially the clicker questions. If in doubt,
run the programs

CQ:Are these programs equivalent?

| 2
b: b:
["W e)1)1 [W e)1)7
, 0] o]
def myFun(l): def myFun(l):
l.append(6) 1 +[6]
return | return |

print(myFun®)) £ YE€S print(myFun(b))
- Bino

What can we do to make them
equivalent?

def myFun(l):
1=1+[6]
return |

print(myFun(b))
® Now program 2 will print the same as program 1

® But what about the value of b after the function?

Advanced List Operations

e L=1[0,1,72]

® [extend([4, 5, 6])
® print(L) will print: [0, 1, 2, 4, 5, 6]

® [extend([“Hello”])
® print() will print: [0, 1, 2,4, 5,6, “hello”]

® Linsert(0, “a”)
® print() will print: [“a” ,0,1,2,4,5,6, “hello”]

® L.insert(2, “a”)
® print(lL) will print;: [“a” ,0, “a” ,1,2,4,5,6, “hello”]

A special case for insert
° L=[0,1,2]

® [.ansert(len(l), 3)
® print (L) will print [0, 1, 2, 3]

® [.insert(3000, 4)
® print (L) will print [0, 1, 2, 3, 4]

® Insert also works with negative indices
® Try 1t and see what you get!

CQ:Are these programs equivalent?

|)
b= b=
["W e)1)1 [W e)1)7
0] o]
b.ansert(len(b), “w) b.append(“w~)
print(b) print(b)
A: yes

- B:no

Advanced List Operations

° L=[0,1,2,0]

® [.reverse()
® print(L) will print: [0, 2, 1, O]

® [.remove(0)
® print(L) will print: [2, 1, O]

® [.remove(0)
® print(L) will print: [2, 1]

® print (L.index(2)) will print O

Why are Lists useful?

® They provide a mechanism for creating a collection of items

def doubleList(b):
1=0
while 1 < len(b):
b[i] = 2 * b[i]
1=1+1

return (b)

Why lists are useful

® We can encode other structures, for instance arrays

® That1s
[[1,2,3], [4,5,6]]

® would encode

[123
4 5 6

1 4
3 6

® (an 1t also encode

777

Applications & Projects 3, 4

® [mage as rectangular raster
® Pixels and color channels
® Who needs 16M colors anyway?

® (Changing pixels infrastructure
® (oordinate system
® Black and white case

® Turtle tracks

® Instruction loop of a conceptual machine

® Abstractions

[Image Basics

® An image 1s a rectangle of color dots called pixels

® [n B&W 1mages, the pixels are either black, or white, or a shade
of grey.

® We can make an image by
® Building a rectangle of pixels, called a raster
® Assigning to each pixel a color value

® oif, .jpg, etc. are just encodings

Color Values

® All colors in computer images are a combination of red, green and
blue, the color channels

® Fach color channel 1s encoded as a number 0..255
® (0 means the color 1s absent,
® 755 the color 1s at maximum brightness
® Gray means R=G=B
® All other values are shades of brightness of the color

® Example: I
®* R,G,B=2550,0 O
®* R,G,B=0,0,255

® R,G,B =255,255,255 —
® R,G,B =255,255,0

~ * RG,B=0,00 -

Pixels and Coordinates

® To make or change a picture, we need to assign values to the
pixels

® We can enumerate the pixels using Cartesian coordinates
(column, row):

® V = oetPixel(c,r) would deliver the three components
® setPixel(c,r,V) would set the three components to V
® But what 1s V?

0,2 |1,2 12,2
0,1 1,121

0,0 11,0 [2,0

Pixel Values

® For project 4, we restrict to black and white, as 1t simplifies our
data structures:

® sectPixelToBlack(c,r)
setPixel ToWhite(c,r)
setAllPixelsToWhite()
1sPixelWhite(c,r)
1sPixelBlack(c,r)

Pixel Values

® For project 3 we deal with RGB triples, allowing each color
channel to be 1n the full range of 0..255

® Here, we will manipulate pixel values of real images

® Example: make a color picture B&W:

® FEach pixel value 1s averaged and the average assigned to each
RGB field

® (Color image pixel (128,205,33) would be replaced with
(122,122,122), because (128+205+33)/3 == 122

Does 1t matter?

® [f some area 1s colored (r,g,b) and an adjacent area 1s colored
(r+3,2-4,b+7) can you tell the difference?

(156,132,200) V. (159,1

Color value 1n binary

® ()..255 equals & bits:
® (156, 132,200)1s(10011100,10000100,11001000)
® (159,128,207)1s(10011111,10000000,11001111)

® Conyecture: the 4 low-order bits do not matter
® So only 4 bits matter? Try it!

® We can use the low order bits for clandestine purpose:

® Encode the high order 4 bits of another picture as the low-order 4 bits
of this picture

® Use the 4 low-order bits for other things, e.g. watermarking

Things to try

® Set the 4 low-order bits to O
® Hide one picture 1n another

® Extract the hidden picture

® Put text into the picture

Making a b&w picture w/o gray

® Need to create the pixel rectangle:

® (Canvas functions:
® makeWhiteImage(width,height)
® destroylmage()

® Pixel assignment and test functions
® gsetPixelToBlack(c,r)
® gsetPixelToWhite(c,r)
® setAllPixelsToWhite()
® 1sPixelWhite(c,r)
® 1sPixelBlack(c,r)

Example

® makeWhiteImage(4,3)
setPixel ToBlack(0,0)
setPixelToBlack(0,2)
setPixelToBlack(2,1)
setPixel ToWhite(0,0)

Turtle Metaphor

Turtle moves across canvas, pixel by pixel, starts somewhere
Where the turtle 1s, it leaves a black pixel
Turtle can move N, S, E, W

Tell the turtle:

® Where to start, here at position (1,4)
® Where to move

Moves could be encoded as a string: “EESS”

H | |

Boundaries

® What should happen 1f the turtle wants to move East but 1s at the
border?

® (Could throw an error :-
® (Could stay put at border

® (Could move virtually off canvas
® Example: “EEE”

® [f we stay put, then turtle 1gnores going off raster
® Then “EESS” isequivalentto “EEESS”

Turtle Algorithm

® Recall the “read book™ algorithm---

® Turtle algorithm:
1. Get width, height of image; create white canvas
Get pos_x, pos_y of turtle
Make pixel (pos_x, pos_y) black
Get string S encoding turtle moves
While there remain characters of S not yet processed:
move turtle according to next character

RS B Lo b

make new pixel black

Parallels

Characters of S are like machine instruction

The “machine” is the infrastructure of marking turtle squares
black and keeping the turtle on the rectangle of pixels, the
canvas

The nstructions manipulating pixels are the machine
Instructions:

® But that machine has a low level of abstraction

CS 1s all about abstractions and conceptual machines

