
Announcements
 Project 2 due next Monday

 Next Tuesday is review session;

 Midterm 1 on Wed., EE 129, 8:00 – 9:30pm

 Project 3 to be posted Oct. 3 (next Wed)

 Preparing for the Midterm:

 Review Chapters 3-6 of Part 1 and chapters 8-9 of Part 2 of the textbook.
Pay attention to the examples and exercises

 Review the lecture slides, especially the clicker questions. If in doubt,
run the programs

Python Boot Camp!...?
 FAQ

 Quick review of Libraries

 Sequences

 Index into a sequence

 [] notation

 Slicing and other operations

Function calls as conditions?
 We have seen a lot of conditionals like:

 if x == 3: or if y: or if (x<3) and (y%3 ==0):

 But what about something like this?

 if myFun(x):

This is equivalent to writing:

 z = myFun(x):

 if z:

So it is just fine

Libraries
 What is the difference between:

1. import library
2. from library import *

 Both provide you with a mechanism to utilize additional functionality in your
program
 Version 1 requires referencing library functions using the object notation:

<library>.<function>(<parameters>)
 import math
 math.sqrt(x)

 Version 2 obligates you to use the function name without library reference:
 from math import *
 sqrt(x)

 If you mix the two Python throws an error

Libraries

>>> from math import *
>>> math.sqrt(4)
Traceback (most recent call last):
 File "<pyshell#153>", line 1, in <module>
 math.sqrt(4)
NameError: name 'math' is not defined

>>> import graphics
 >>> win = GraphWin()
Traceback (most recent call last):
File "<pyshell#1>", line 1, in <module>
 win = GraphWin()
NameError: name 'GraphWin' is not defined

Returns
 If a function does not specify a value to return it returns a

special python value: “None”

 Just because a function has a return statement in it, does NOT
mean it will return a value in every case

 >>> def example(x):
 if x < 10:
 print(x)
 else:
 return(30)
>>> z = example(10)
>>> print(z)
30
>>> z = example(9)
9
>>> print(z)
None

Sequences in Python
 So far, we know of three types of sequences in Python

 Strings: “Hello World”

 Ranges: range(10)

 Lists: [0,1,2,3,4,5] list(range(10))

Sequences
 Range: stores multiple integers consecutively in memory

 String: stores multiple characters consecutively in memory

 List: stores multiple elements consecutively in memory

 These structures provide means to access individual values.

 Ranges, Lists and Strings are indexed from 0 up

Indices (plural of index)
 Indices provide us a quick mechanism for accessing a given

element that is contained within a sequence

[] Notation
 a[k] : gives a name to the k th element of a list

 a = “Sally”

 a[k] is equal to the k+1 character of Sally

 a = list(range(0, 10))

 a[k] is equal to the k+1 number in the range of 0 to 9

Lists: Examples
 a = list(range(0, 10))

 print(a) [0,1,2,3,4,5,6,7,8,9]

 print(a[3]) 3

 print(a) [0,1,2,3,4,5,6,7,8,9]

Lets Make it More Concrete

10 a
0 b
1

2
3
4
S c

a

a = 10
b = range(0,5)
c = “Sally”

b[0]
b[1]
b[2]

b[4]
b[3]

….

c[0]
c[1]

Negative Indices
 What happens if we use a negative index?

 Do we get an error?

x = range(10)

print(x[-1]) this will print 9

print(x[-10]) this will print 0

print(x[-11]) Error!

>>> print(x[-11])
Traceback (most recent call last):
 File "<pyshell#173>", line 1, in <module>
 print(x[-11])
IndexError: range object index out of range

Lets Make it More Concrete

10 a
0 b
1

2
3
4
S c

a

a = 10
b = range(0,5)
c = “Sally”

b[-5]
b[-4]
b[-3]

b[-1]
b[-2]

….

c[-5]
c[-4]

Lists: Examples
 a = list(range(0, 10))

 print(a) [0,1,2,3,4,5,6,7,8,9]

 print(a[-3]) 7

 print(a) [0,1,2,3,4,5,6,7,8,9]

Lists
 The [] can be used to index into an list, range, or string. For

example:

i = 0
x = list(range(0,10))
while i < 10 :
 print (x[i])
 i = i + 1

i = 0
x = range(0,10)
while i < 10 :
 print (x[i])
 i = i + 1

Strings
 The [] can be used in the same way on a string. For example:

i = 0
x = “This is a string”
while i < 16 :
 print (x[i])
 i = i + 1

The len() function
 The len function gives you the “length” or number of

elements in a sequence

 Strings: number of characters in the string

 Ranges: number of integers in the range

 Lists: number of elements in the list

>>> len(range(10))
10
>>> len([0,1,2,3,4,5])
6
>>> len("this is a string")
16

Defensive Coding
 These three examples suffer from the same defect!

 The while loop is hard coded!

i = 0
x = list(range(0,10))
while i < 10 :
 print (x[i])
 i = i + 1

i = 0
x = “This is a string”
while i < 17 :
 print (x[i])
 i = i + 1

ERROR!

The len function
 A better way to write the previous code:

i = 0
x = “This is a string”
while i < len(x):
 print (x[i])
 i = i + 1

Clicker Question: Are these two
functions equivalent?

def printByCharacter(str)
 i = 0
 while i < len(str):
 print (str[i])
 i = i + 1

def printByCharacter(str)
 i = 0
 while i < 16:
 print (str[i])
 i = i + 1

A: yes

B: no

Why is this important?
 We want to write general purpose functions

def printByCharacter(str)
 i = 0
 while i < len(str):
 print (str[i])
 i = i + 1

Typical indexing mistakes
 Undershooting the bounds

 a = “hello” a[-6]

 Overshooting the bounds

 a = “hello” a[5]

 Off by one

 a[0] vs a[1]

 By convention we use 0-based indexing

 a=“hello”

 print(a[0])

 print(a[1])

Homework
 Study for the exam!

 Work on Project 2

Python Boot Camp
 String Slicing

 Lists

 Heterogeneous vs homogenous

 Assignment to lists allowed

 Lists containing other sequences

CQ: Are these programs
equivalent?

i = 0
x = “This is a string”
while i < len(x):
 print (x[i])
 i = i + 1

x = “This is a string”
for y in x:
 print (y)

A: yes

B: no

What is going on here?

x = “This is a string”
for y in x:
 print (y)

T x
h
i
s

i

….
y = x[j]

Under the hood we are doing something
similar to:

CQ: Are these programs
equivalent?

i = 0
x = “This is a string”
while i < len(x):
 print (x[i])
 i = i + 1

A: yes

B: no

x = “This is a string”
i = 0 – len(x)
while i < 0:
 print (x[i])
 i = i + 1

Slicing
 In addition to selecting a single value from an array or string the

[] can be used to select values in a special range.

x = “This is a string”
print (x[0])
print (x[0:5])
print (x[:3])
print (x[3:])
print (x[-1:])
print (x[:-1])

Slicing

x = “This is a string”
print (x[0])
T
print (x[0:5])
This
print (x[:3])
Thi
print (x[3:])
s is a string
print (x[-1:])
g
print (x[:-1])
This is a strin

Lists
 We can also store more complex elements into an list. For

example, consider these two cases:

x = “ABCD”
y = [“A”,”B”,”C”,”D”]
print (x)
ABCD
print (y)
['A', 'B', 'C', 'D']

Lists
 y is an example of a list of strings. Each element is a string. We

could expand it as follows:

 As you can see each element can be a different length. They can
also be different types:

y = [“ABCD”, ”BCD”, ”CD”, ”D”]

y = [“ABCD”, [1,2,3] , ”CD”, ”D”]

Lists
 Suppose we wanted to extract the value 3

 The first set of [] get the array in position 1 of y. The second []
is selecting the element in position 2 of that array. This is equiv.
to:

y = [“ABCD”, [1,2,3] , ”CD”, ”D”]
y[1][2]

z = y[1]

z[2]

Assigning to Lists
 The [] syntax not only allows us to access a given element, it

lets us access that memory location

 Namely, we can assign to that location

 b[2] = 100

 print(b[2])

 b[2] = b[2] – 50

 print(b[2])

10 a
0 b
1

2
3
4

b[0]
b[1]
b[2]

b[4]
b[3]

Strings are Immutable
 What do we mean by immutable?

 We cannot assign to strings like we do to lists

i = 0
x = “This is a string”
x[i] = ‘b’

Ranges are Immutable
 What do we mean by immutable?

 We cannot assign to strings like we do to lists

i = 0
x = range(10)
x[i] = ‘b’

Operations on Lists
 Just like we can concatenate strings we can concatenate lists

 print ([1, 2, 3] + [4, 5, 6])

 Will print: [1, 2, 3, 4, 5, 6]

 Just like we can slice strings we can also slice lists

 b = [1, 2, 3, 4, 5, 6]

 print (b[2:5])

 Will print [3, 4, 5]

Advanced List Operations
 We once again use the object.method() syntax

 This time the list is the object

 Notice the list type supports different methods from the string type

 c = [1, 2, 3, 4, 5]

 c.append(6)

 Results in c having an additional element:

 [1, 2, 3, 4, 5, 6]

Announcements
 Amazon will update Part 1 of our e-Textbook. Instructions are on the

homepage.

 Next Tuesday is review session;

 Midterm 1 on Wed., EE 129, 8:00 – 9:30pm

 Project 3 to be posted Oct. 3 (next Wed)

 Preparing for the Midterm:

 Review Chapters 3-6 of Part 1 and chapters 8-9 of Part 2 of the textbook.
Pay attention to the examples and exercises

 Review the lecture slides, especially the clicker questions. If in doubt,
run the programs

CQ:Are these programs equivalent?

b =
[‘h’,’e’,’l’,’l
’,’o’]
def myFun(l):
 l.append(6)
 return l
print(myFun(b))

b =
[‘h’,’e’,’l’,’l’,’
o’]
def myFun(l):
 l +[6]
 return l
print(myFun(b))

2 1

A: yes

B: no

What can we do to make them
equivalent?

 Now program 2 will print the same as program 1

 But what about the value of b after the function?

b =
[‘h’,’e’,’l’,’l’,’
o’]
def myFun(l):
 l = l +[6]
 return l
print(myFun(b))

Advanced List Operations
 L = [0, 1, 2]

 L.extend([4, 5, 6])

 print(L) will print: [0, 1, 2, 4, 5, 6]

 L.extend([“Hello”])

 print(L) will print: [0, 1, 2, 4, 5, 6, “hello”]

 L.insert(0, “a”)

 print(L) will print: [“a”, 0, 1, 2, 4, 5, 6, “hello”]

 L.insert(2, “a”)

 print(L) will print: [“a”, 0, “a”, 1, 2, 4, 5, 6, “hello”]

A special case for insert
 L = [0, 1, 2]

 L.insert(len(L), 3)

 print (L) will print [0, 1, 2, 3]

 L.insert(3000, 4)

 print (L) will print [0, 1, 2, 3, 4]

 Insert also works with negative indices

 Try it and see what you get!

CQ:Are these programs equivalent?

b =
[‘h’,’e’,’l’,’l
’,’o’]
b.insert(len(b), “w”)
print(b)

b =
[‘h’,’e’,’l’,’l’,’
o’]
b.append(“w”)
print(b)

2 1

A: yes

B: no

Advanced List Operations
 L = [0, 1, 2, 0]

 L.reverse()

 print(L) will print: [0, 2, 1, 0]

 L.remove(0)

 print(L) will print: [2, 1, 0]

 L.remove(0)

 print(L) will print: [2, 1]

 print (L.index(2)) will print 0

Why are Lists useful?
 They provide a mechanism for creating a collection of items

def doubleList(b):
 i = 0
 while i < len(b):
 b[i] = 2 * b[i]
 i = i +1
 return (b)

print(doubleList([1,2,3]))

Why lists are useful
 We can encode other structures, for instance arrays

 That is
 [[1,2,3], [4,5,6]]

 would encode
1 2 3
4 5 6

 Can it also encode
1 4
2 5
3 6

???

Applications & Projects 3, 4
 Image as rectangular raster

 Pixels and color channels

 Who needs 16M colors anyway?

 Changing pixels infrastructure
 Coordinate system

 Black and white case

 Turtle tracks

 Instruction loop of a conceptual machine

 Abstractions

Image Basics
 An image is a rectangle of color dots called pixels

 In B&W images, the pixels are either black, or white, or a shade
of grey.

 We can make an image by

 Building a rectangle of pixels, called a raster

 Assigning to each pixel a color value

 .gif, .jpg, etc. are just encodings

Color Values

 All colors in computer images are a combination of red, green and
blue, the color channels

 Each color channel is encoded as a number 0..255

 0 means the color is absent,

 255 the color is at maximum brightness

 Gray means R=G=B

 All other values are shades of brightness of the color

 Example:

 R,G,B = 255,0,0

 R,G,B = 0,0,255

 R,G,B = 255,255,255

 R,G,B = 255,255,0

 R,G,B = 0,0,0

Pixels and Coordinates
 To make or change a picture, we need to assign values to the

pixels

 We can enumerate the pixels using Cartesian coordinates
(column, row):

 V = getPixel(c,r) would deliver the three components

 setPixel(c,r,V) would set the three components to V

 But what is V?

0,0

2,2

2,1

1,0

1,1

1,2 0,2

0,1

2,0

Pixel Values
 For project 4, we restrict to black and white, as it simplifies our

data structures:

 setPixelToBlack(c,r)

 setPixelToWhite(c,r)

 setAllPixelsToWhite()

 isPixelWhite(c,r)

 isPixelBlack(c,r)

Pixel Values
 For project 3 we deal with RGB triples, allowing each color

channel to be in the full range of 0..255

 Here, we will manipulate pixel values of real images

 Example: make a color picture B&W:

 Each pixel value is averaged and the average assigned to each
RGB field

 Color image pixel (128,205,33) would be replaced with
(122,122,122), because (128+205+33)/3 == 122

Does it matter?
 If some area is colored (r,g,b) and an adjacent area is colored

(r+3,g-4,b+7) can you tell the difference?

(156,132,200) V. (159,128,207)

Color value in binary

 0..255 equals 8 bits:

 (156, 132, 200) is (10011100,10000100,11001000)

 (159, 128, 207) is (10011111,10000000,11001111)

 Conjecture: the 4 low-order bits do not matter

 So only 4 bits matter? Try it!

 We can use the low order bits for clandestine purpose:

 Encode the high order 4 bits of another picture as the low-order 4 bits
of this picture

 Use the 4 low-order bits for other things, e.g. watermarking

Things to try
 Set the 4 low-order bits to 0

 Hide one picture in another

 Extract the hidden picture

 Put text into the picture

 …

Making a b&w picture w/o gray
 Need to create the pixel rectangle:

 Canvas functions:

 makeWhiteImage(width,height)

 destroyImage()

 Pixel assignment and test functions

 setPixelToBlack(c,r)

 setPixelToWhite(c,r)

 setAllPixelsToWhite()

 isPixelWhite(c,r)

 isPixelBlack(c,r)

Example
 makeWhiteImage(4,3)

setPixelToBlack(0,0)
setPixelToBlack(0,2)
setPixelToBlack(2,1)
setPixelToWhite(0,0)

Turtle Metaphor
 Turtle moves across canvas, pixel by pixel, starts somewhere

 Where the turtle is, it leaves a black pixel

 Turtle can move N, S, E, W

 Tell the turtle:
 Where to start, here at position (1,4)

 Where to move

 Moves could be encoded as a string: “EESS”

Boundaries
 What should happen if the turtle wants to move East but is at the

border?

 Could throw an error

 Could stay put at border

 Could move virtually off canvas

 Example: “EEE”

 If we stay put, then turtle ignores going off raster

 Then “EESS” is equivalent to “EEESS”

Turtle Algorithm
 Recall the “read book” algorithm…

 Turtle algorithm:

1. Get width, height of image; create white canvas

2. Get pos_x, pos_y of turtle

3. Make pixel (pos_x, pos_y) black

4. Get string S encoding turtle moves

5. While there remain characters of S not yet processed:

6. move turtle according to next character

7. make new pixel black

Parallels
 Characters of S are like machine instruction

 The “machine” is the infrastructure of marking turtle squares
black and keeping the turtle on the rectangle of pixels, the
canvas

 The instructions manipulating pixels are the machine
instructions…

 But that machine has a low level of abstraction

 CS is all about abstractions and conceptual machines

