
Announcements
 Project 2 due next Monday

 Next Tuesday is review session;

 Midterm 1 on Wed., EE 129, 8:00 – 9:30pm

 Project 3 to be posted Oct. 3 (next Wed)

 Preparing for the Midterm:

 Review Chapters 3-6 of Part 1 and chapters 8-9 of Part 2 of the textbook.
Pay attention to the examples and exercises

 Review the lecture slides, especially the clicker questions. If in doubt,
run the programs

Python Boot Camp!...?
 FAQ

 Quick review of Libraries

 Sequences

 Index into a sequence

 [] notation

 Slicing and other operations

Function calls as conditions?
 We have seen a lot of conditionals like:

 if x == 3: or if y: or if (x<3) and (y%3 ==0):

 But what about something like this?

 if myFun(x):

This is equivalent to writing:

 z = myFun(x):

 if z:

So it is just fine

Libraries
 What is the difference between:

1. import library
2. from library import *

 Both provide you with a mechanism to utilize additional functionality in your
program
 Version 1 requires referencing library functions using the object notation:

<library>.<function>(<parameters>)
 import math
 math.sqrt(x)

 Version 2 obligates you to use the function name without library reference:
 from math import *
 sqrt(x)

 If you mix the two Python throws an error

Libraries

>>> from math import *
>>> math.sqrt(4)
Traceback (most recent call last):
 File "<pyshell#153>", line 1, in <module>
 math.sqrt(4)
NameError: name 'math' is not defined

>>> import graphics
 >>> win = GraphWin()
Traceback (most recent call last):
File "<pyshell#1>", line 1, in <module>
 win = GraphWin()
NameError: name 'GraphWin' is not defined

Returns
 If a function does not specify a value to return it returns a

special python value: “None”

 Just because a function has a return statement in it, does NOT
mean it will return a value in every case

 >>> def example(x):
 if x < 10:
 print(x)
 else:
 return(30)
>>> z = example(10)
>>> print(z)
30
>>> z = example(9)
9
>>> print(z)
None

Sequences in Python
 So far, we know of three types of sequences in Python

 Strings: “Hello World”

 Ranges: range(10)

 Lists: [0,1,2,3,4,5] list(range(10))

Sequences
 Range: stores multiple integers consecutively in memory

 String: stores multiple characters consecutively in memory

 List: stores multiple elements consecutively in memory

 These structures provide means to access individual values.

 Ranges, Lists and Strings are indexed from 0 up

Indices (plural of index)
 Indices provide us a quick mechanism for accessing a given

element that is contained within a sequence

[] Notation
 a[k] : gives a name to the k th element of a list

 a = “Sally”

 a[k] is equal to the k+1 character of Sally

 a = list(range(0, 10))

 a[k] is equal to the k+1 number in the range of 0 to 9

Lists: Examples
 a = list(range(0, 10))

 print(a) [0,1,2,3,4,5,6,7,8,9]

 print(a[3]) 3

 print(a) [0,1,2,3,4,5,6,7,8,9]

Lets Make it More Concrete

10 a
0 b
1

2
3
4
S c

a

a = 10
b = range(0,5)
c = “Sally”

b[0]
b[1]
b[2]

b[4]
b[3]

….

c[0]
c[1]

Negative Indices
 What happens if we use a negative index?

 Do we get an error?

x = range(10)

print(x[-1])  this will print 9

print(x[-10])  this will print 0

print(x[-11])  Error!

>>> print(x[-11])
Traceback (most recent call last):
 File "<pyshell#173>", line 1, in <module>
 print(x[-11])
IndexError: range object index out of range

Lets Make it More Concrete

10 a
0 b
1

2
3
4
S c

a

a = 10
b = range(0,5)
c = “Sally”

b[-5]
b[-4]
b[-3]

b[-1]
b[-2]

….

c[-5]
c[-4]

Lists: Examples
 a = list(range(0, 10))

 print(a) [0,1,2,3,4,5,6,7,8,9]

 print(a[-3]) 7

 print(a) [0,1,2,3,4,5,6,7,8,9]

Lists
 The [] can be used to index into an list, range, or string. For

example:

i = 0
x = list(range(0,10))
while i < 10 :
 print (x[i])
 i = i + 1

i = 0
x = range(0,10)
while i < 10 :
 print (x[i])
 i = i + 1

Strings
 The [] can be used in the same way on a string. For example:

i = 0
x = “This is a string”
while i < 16 :
 print (x[i])
 i = i + 1

The len() function
 The len function gives you the “length” or number of

elements in a sequence

 Strings: number of characters in the string

 Ranges: number of integers in the range

 Lists: number of elements in the list

>>> len(range(10))
10
>>> len([0,1,2,3,4,5])
6
>>> len("this is a string")
16

Defensive Coding
 These three examples suffer from the same defect!

 The while loop is hard coded!

i = 0
x = list(range(0,10))
while i < 10 :
 print (x[i])
 i = i + 1

i = 0
x = “This is a string”
while i < 17 :
 print (x[i])
 i = i + 1

ERROR!

The len function
 A better way to write the previous code:

i = 0
x = “This is a string”
while i < len(x):
 print (x[i])
 i = i + 1

Clicker Question: Are these two
functions equivalent?

def printByCharacter(str)
 i = 0
 while i < len(str):
 print (str[i])
 i = i + 1

def printByCharacter(str)
 i = 0
 while i < 16:
 print (str[i])
 i = i + 1

A: yes

B: no

Why is this important?
 We want to write general purpose functions

def printByCharacter(str)
 i = 0
 while i < len(str):
 print (str[i])
 i = i + 1

Typical indexing mistakes
 Undershooting the bounds

 a = “hello” a[-6]

 Overshooting the bounds

 a = “hello” a[5]

 Off by one

 a[0] vs a[1]

 By convention we use 0-based indexing

 a=“hello”

 print(a[0])

 print(a[1])

Homework
 Study for the exam!

 Work on Project 2

Python Boot Camp
 String Slicing

 Lists

 Heterogeneous vs homogenous

 Assignment to lists allowed

 Lists containing other sequences

CQ: Are these programs
equivalent?

i = 0
x = “This is a string”
while i < len(x):
 print (x[i])
 i = i + 1

x = “This is a string”
for y in x:
 print (y)

A: yes

B: no

What is going on here?

x = “This is a string”
for y in x:
 print (y)

T x
h
i
s

i

….
y = x[j]

Under the hood we are doing something
similar to:

CQ: Are these programs
equivalent?

i = 0
x = “This is a string”
while i < len(x):
 print (x[i])
 i = i + 1

A: yes

B: no

x = “This is a string”
i = 0 – len(x)
while i < 0:
 print (x[i])
 i = i + 1

Slicing
 In addition to selecting a single value from an array or string the

[] can be used to select values in a special range.

x = “This is a string”
print (x[0])
print (x[0:5])
print (x[:3])
print (x[3:])
print (x[-1:])
print (x[:-1])

Slicing

x = “This is a string”
print (x[0])
T
print (x[0:5])
This
print (x[:3])
Thi
print (x[3:])
s is a string
print (x[-1:])
g
print (x[:-1])
This is a strin

Lists
 We can also store more complex elements into an list. For

example, consider these two cases:

x = “ABCD”
y = [“A”,”B”,”C”,”D”]
print (x)
ABCD
print (y)
['A', 'B', 'C', 'D']

Lists
 y is an example of a list of strings. Each element is a string. We

could expand it as follows:

 As you can see each element can be a different length. They can
also be different types:

y = [“ABCD”, ”BCD”, ”CD”, ”D”]

y = [“ABCD”, [1,2,3] , ”CD”, ”D”]

Lists
 Suppose we wanted to extract the value 3

 The first set of [] get the array in position 1 of y. The second []
is selecting the element in position 2 of that array. This is equiv.
to:

y = [“ABCD”, [1,2,3] , ”CD”, ”D”]
y[1][2]

z = y[1]

z[2]

Assigning to Lists
 The [] syntax not only allows us to access a given element, it

lets us access that memory location

 Namely, we can assign to that location

 b[2] = 100

 print(b[2])

 b[2] = b[2] – 50

 print(b[2])

10 a
0 b
1

2
3
4

b[0]
b[1]
b[2]

b[4]
b[3]

Strings are Immutable
 What do we mean by immutable?

 We cannot assign to strings like we do to lists

i = 0
x = “This is a string”
x[i] = ‘b’

Ranges are Immutable
 What do we mean by immutable?

 We cannot assign to strings like we do to lists

i = 0
x = range(10)
x[i] = ‘b’

Operations on Lists
 Just like we can concatenate strings we can concatenate lists

 print ([1, 2, 3] + [4, 5, 6])

 Will print: [1, 2, 3, 4, 5, 6]

 Just like we can slice strings we can also slice lists

 b = [1, 2, 3, 4, 5, 6]

 print (b[2:5])

 Will print [3, 4, 5]

Advanced List Operations
 We once again use the object.method() syntax

 This time the list is the object

 Notice the list type supports different methods from the string type

 c = [1, 2, 3, 4, 5]

 c.append(6)

 Results in c having an additional element:

 [1, 2, 3, 4, 5, 6]

Announcements
 Amazon will update Part 1 of our e-Textbook. Instructions are on the

homepage.

 Next Tuesday is review session;

 Midterm 1 on Wed., EE 129, 8:00 – 9:30pm

 Project 3 to be posted Oct. 3 (next Wed)

 Preparing for the Midterm:

 Review Chapters 3-6 of Part 1 and chapters 8-9 of Part 2 of the textbook.
Pay attention to the examples and exercises

 Review the lecture slides, especially the clicker questions. If in doubt,
run the programs

CQ:Are these programs equivalent?

b =
[‘h’,’e’,’l’,’l
’,’o’]
def myFun(l):
 l.append(6)
 return l
print(myFun(b))

b =
[‘h’,’e’,’l’,’l’,’
o’]
def myFun(l):
 l +[6]
 return l
print(myFun(b))

2 1

A: yes

B: no

What can we do to make them
equivalent?

 Now program 2 will print the same as program 1

 But what about the value of b after the function?

b =
[‘h’,’e’,’l’,’l’,’
o’]
def myFun(l):
 l = l +[6]
 return l
print(myFun(b))

Advanced List Operations
 L = [0, 1, 2]

 L.extend([4, 5, 6])

 print(L) will print: [0, 1, 2, 4, 5, 6]

 L.extend([“Hello”])

 print(L) will print: [0, 1, 2, 4, 5, 6, “hello”]

 L.insert(0, “a”)

 print(L) will print: [“a”, 0, 1, 2, 4, 5, 6, “hello”]

 L.insert(2, “a”)

 print(L) will print: [“a”, 0, “a”, 1, 2, 4, 5, 6, “hello”]

A special case for insert
 L = [0, 1, 2]

 L.insert(len(L), 3)

 print (L) will print [0, 1, 2, 3]

 L.insert(3000, 4)

 print (L) will print [0, 1, 2, 3, 4]

 Insert also works with negative indices

 Try it and see what you get!

CQ:Are these programs equivalent?

b =
[‘h’,’e’,’l’,’l
’,’o’]
b.insert(len(b), “w”)
print(b)

b =
[‘h’,’e’,’l’,’l’,’
o’]
b.append(“w”)
print(b)

2 1

A: yes

B: no

Advanced List Operations
 L = [0, 1, 2, 0]

 L.reverse()

 print(L) will print: [0, 2, 1, 0]

 L.remove(0)

 print(L) will print: [2, 1, 0]

 L.remove(0)

 print(L) will print: [2, 1]

 print (L.index(2)) will print 0

Why are Lists useful?
 They provide a mechanism for creating a collection of items

def doubleList(b):
 i = 0
 while i < len(b):
 b[i] = 2 * b[i]
 i = i +1
 return (b)

print(doubleList([1,2,3]))

Why lists are useful
 We can encode other structures, for instance arrays

 That is
 [[1,2,3], [4,5,6]]

 would encode
1 2 3
4 5 6

 Can it also encode
1 4
2 5
3 6

???

Applications & Projects 3, 4
 Image as rectangular raster

 Pixels and color channels

 Who needs 16M colors anyway?

 Changing pixels infrastructure
 Coordinate system

 Black and white case

 Turtle tracks

 Instruction loop of a conceptual machine

 Abstractions

Image Basics
 An image is a rectangle of color dots called pixels

 In B&W images, the pixels are either black, or white, or a shade
of grey.

 We can make an image by

 Building a rectangle of pixels, called a raster

 Assigning to each pixel a color value

 .gif, .jpg, etc. are just encodings

Color Values

 All colors in computer images are a combination of red, green and
blue, the color channels

 Each color channel is encoded as a number 0..255

 0 means the color is absent,

 255 the color is at maximum brightness

 Gray means R=G=B

 All other values are shades of brightness of the color

 Example:

 R,G,B = 255,0,0

 R,G,B = 0,0,255

 R,G,B = 255,255,255

 R,G,B = 255,255,0

 R,G,B = 0,0,0

Pixels and Coordinates
 To make or change a picture, we need to assign values to the

pixels

 We can enumerate the pixels using Cartesian coordinates
(column, row):

 V = getPixel(c,r) would deliver the three components

 setPixel(c,r,V) would set the three components to V

 But what is V?

0,0

2,2

2,1

1,0

1,1

1,2 0,2

0,1

2,0

Pixel Values
 For project 4, we restrict to black and white, as it simplifies our

data structures:

 setPixelToBlack(c,r)

 setPixelToWhite(c,r)

 setAllPixelsToWhite()

 isPixelWhite(c,r)

 isPixelBlack(c,r)

Pixel Values
 For project 3 we deal with RGB triples, allowing each color

channel to be in the full range of 0..255

 Here, we will manipulate pixel values of real images

 Example: make a color picture B&W:

 Each pixel value is averaged and the average assigned to each
RGB field

 Color image pixel (128,205,33) would be replaced with
(122,122,122), because (128+205+33)/3 == 122

Does it matter?
 If some area is colored (r,g,b) and an adjacent area is colored

(r+3,g-4,b+7) can you tell the difference?

(156,132,200) V. (159,128,207)

Color value in binary

 0..255 equals 8 bits:

 (156, 132, 200) is (10011100,10000100,11001000)

 (159, 128, 207) is (10011111,10000000,11001111)

 Conjecture: the 4 low-order bits do not matter

 So only 4 bits matter? Try it!

 We can use the low order bits for clandestine purpose:

 Encode the high order 4 bits of another picture as the low-order 4 bits
of this picture

 Use the 4 low-order bits for other things, e.g. watermarking

Things to try
 Set the 4 low-order bits to 0

 Hide one picture in another

 Extract the hidden picture

 Put text into the picture

 …

Making a b&w picture w/o gray
 Need to create the pixel rectangle:

 Canvas functions:

 makeWhiteImage(width,height)

 destroyImage()

 Pixel assignment and test functions

 setPixelToBlack(c,r)

 setPixelToWhite(c,r)

 setAllPixelsToWhite()

 isPixelWhite(c,r)

 isPixelBlack(c,r)

Example
 makeWhiteImage(4,3)

setPixelToBlack(0,0)
setPixelToBlack(0,2)
setPixelToBlack(2,1)
setPixelToWhite(0,0)

Turtle Metaphor
 Turtle moves across canvas, pixel by pixel, starts somewhere

 Where the turtle is, it leaves a black pixel

 Turtle can move N, S, E, W

 Tell the turtle:
 Where to start, here at position (1,4)

 Where to move

 Moves could be encoded as a string: “EESS”

Boundaries
 What should happen if the turtle wants to move East but is at the

border?

 Could throw an error

 Could stay put at border

 Could move virtually off canvas

 Example: “EEE”

 If we stay put, then turtle ignores going off raster

 Then “EESS” is equivalent to “EEESS”

Turtle Algorithm
 Recall the “read book” algorithm…

 Turtle algorithm:

1. Get width, height of image; create white canvas

2. Get pos_x, pos_y of turtle

3. Make pixel (pos_x, pos_y) black

4. Get string S encoding turtle moves

5. While there remain characters of S not yet processed:

6. move turtle according to next character

7. make new pixel black

Parallels
 Characters of S are like machine instruction

 The “machine” is the infrastructure of marking turtle squares
black and keeping the turtle on the rectangle of pixels, the
canvas

 The instructions manipulating pixels are the machine
instructions…

 But that machine has a low level of abstraction

 CS is all about abstractions and conceptual machines

