
Midterm 1 Review
 Important control structures
 Functions
 Loops
 Conditionals

 Important things to review
 Binary numbers
 Boolean operators (and, or, not)
 String operations: len, ord, +, *, slice, index
 List operations
 Libraries (import math vs from math import *)
 Math operations (math.sqrt, %, /, //, **)

Material to Review
 Review text:
 Part 1: chapters 3-6,
 Part 2: chapters 8-9

 Go over your Pre Labs

 Go over your Lab Solutions

 Understand the results of the various clicker questions

= vs ==
 In Python we use “=“ for assignment
 Example: x = 5
 This sets the variable x to the value 5

 In Python we use “==“ to test equality
 Example: print(x==5)
 This will check if x is equal to 5 and then print True if it is,

or False if it is not
 Typically used in conjunction with an if statement

Functions
 Functions allow us to “name” a region of code in a

similar fashion that a variable allows us to name a
value

 Functions provide us a mechanism to reuse code

def name(input) :
 code to execute when function is called
 return (output)

def name(input) :
 code to execute when function is called
 return output

Abstract:

x = 3
y = 4
def myFun(a, b) :
 z = a + b <--- this creates a local variable
 return z
x = myFun(x, y) <--- this is the call site
print (x) <--- this prints 7
print (y) <--- this prints 4

Concrete:

Local vs Global Variables
 Functions introduce a new “scope”
 This scope defines the lifetime of local variables
 The scope is the function body

def name(input) :
 code to execute <--- scope of local variables
 return output

Local vs Global Variables

a = 3
b = 4
def myFun(a, b) :
 b = a + b <--- b is a local variable
 return b
a = myFun(a, b) <--- this is the call site
print (a) <--- this prints 7
print (b) <--- this prints 4

Local vs Global Variables

a = 3
b = 4
def myFun(x, y) :
 global b
 b = x + y <--- this assigns to the global variable
 return b
a = myFun(a, b) <--- this is the call site
print (a) <--- this prints 7
print (b) <--- this prints 7

Important Concepts
 Only ONE return is ever executed
 The return ends execution of the function
 If there are statements after the executed return they are

ignored!

 If there is no return that is executed the function returns
the special python value: None

 The return specifies the value that the function
“outputs”
 If you return a variable the function outputs the value

stored in that variable

Examples

def noReturn(a):
 x = a + 5
 y = x + 5
 print (y)
x = noReturn(10)
print (x)

def noReturn(a):
 if a > 30:
 return -1
 x = a +5
 y = x + 5
 print (y)
x = noReturn(10)
print (x)

Loops
 Loops allow us to execute a “set of actions” some

number of times
 The number of times is specified differently for the two

types of loops

 There are two types of loops
 For Loops and While Loops

 We call the execution of the body of the loop an
iteration

For Loops
 For loops allow us to execute the body of the loop once

for each element in a sequence
 A sequence can be either a Range, a List, or a String

 For loops assign to the variable each element of the
sequence:
 For a list each element of the list
 For a string each character of the string
 For a range each number in the range

 The value of the variable changes with each iteration of
the loop

for variable in sequence :
 code to execute for each element in the sequence

for variable in sequence :
 code to execute for each element in the
sequence

Abstract:

str = “hello”
for char in str :
 print(char)
for num in [0,1,2,3,4,5] :
 print(num)
for p in range(10, 0, -2) :
 print(p)

Concrete:

While Loops
 While loops allow us to execute the body of the loop

until the loop condition is false

 The loop condition is checked prior to the execution of
the loop body (and on every iteration)

while (condition) :
 code to execute until condition is false

while (condition) :
 code to execute until condition is false

Abstract:

str = “hello”
i = 0
while (i < len(str)) :
 print(str)
 i = i +1

Concrete:

Nested Loops
 We know that each statement in the body of a loop is

executed for each iteration
 What happens if we have a loop nested within another

loop?

for x in range(0, 10) :
 for y in range(0, 100): < --- this loop is the body
 print (y) of the outer loop
 print (x)

Conditionals
 Conditionals allow us to test for a condition and

execute based on whether the condition is True or
False

if condition :
 code to execute if condition is True
else:
 code to execute if condition is False

if condition :
 code to execute if condition is True
else:
 code to execute if condition is False

If x==5 :
 x = 4
else:
 x = 3
print (x)

Abstract:

Concrete:

Things to remember
 The else clause is optional

 There MUST be a condition to check after an elif
 The else clause is still optional here too

 Anything we can express with elif we can express with
a nested if

if x < 10:
 print(“Hello”)
else:
 if y > 30:
 print(“World”)

if x < 10:
 print(“Hello”)
elif y > 30:
 print(“World”)

 Python interprets non-Boolean expressions when they
appear in a conditional:
 if x:
 <statements>

 [], 0, “” are all considered False

 Nonempty lists, nonempty strings, nonzero numbers
are understood as True

Strings and Lists
 Strings are defined by quotation marks
 Example: “this is a string”
 Example: “””this is a string”””

 List are defined by []
 Example: [0,1,2,3,4,5]

 Strings and lists are 0 indexed
 We mean that the logically first element in either the

string or list occurs at the 0th position

Example: Reversing Strings
def reverse(str):
 output = "”
 for i in str:
 output = i + output
 print (output)

Indexing
 X[k] means:
 Element k+1 in a list
 Character k+1 in a string

 If lists are nested, we can refer to them by multiple
indexing from outside in:

X = [1,2, [3,[4]],5]
X[2] == [3,[4]]
X[2][1] == [4]
X[2][1][0] == 4

Negative indexing
 For S a string or list:
 S[0] == S[-len(S)]
 S[1] == S[-len(S)+1]
 …
 S[len(S)-1] == S[-1]

Slice
 If S is a string, then S[3:7] is the substring beginning at

character S[3] and ending with S[6] as the last
character.

 len(S[3:7]) is 4

 If the lower bound is omitted, it is assumed to be 0
S[:5] is the substring of length5 starting with S[0]

 If the upper bound is omitted, it is assumed to be len(S)

CQ: What is S[:] ?
A. S

B. S[0:0]

C. S[0:len(S)]

Slicing Lists
 Works just as slicing strings

List operations
 Let L be a list, L1 another list

 L.append(x) adds x as additional element to L

 L.reverse() reverses list L

 L[k] = v assigns value v as replacement value of L[k]

 L.insert(p,x) inserts x as additional element into L at
position [p]

 L.remove(p) deletes L[p]

 L.index(k) is the same as X[k]

String operations
 Let S be a string

 S.upper() converts all alphabetic characters to upper
case

 S.lower() converts all alphabetic characters to lower
case

 S.capitalize() converts the first character to upper case
and all other alphabetic characters to lower case

 S.reverse() throws an error

	Midterm 1 Review
	Material to Review
	= vs ==
	Functions
	Slide Number 5
	Local vs Global Variables
	Local vs Global Variables
	Local vs Global Variables
	Important Concepts
	Examples
	Loops
	For Loops
	Slide Number 13
	While Loops
	Slide Number 15
	Nested Loops
	Conditionals
	Slide Number 18
	Things to remember
	Slide Number 20
	Strings and Lists
	Example: Reversing Strings
	Indexing
	Negative indexing
	Slice
	CQ: What is S[:] ?
	Slicing Lists
	List operations
	String operations

