
Midterm 1 Review 
 Important control structures 
 Functions 
 Loops 
 Conditionals 

 Important things to review 
 Binary numbers 
 Boolean operators (and, or, not) 
 String operations: len, ord, +, *, slice, index 
 List operations 
 Libraries  (import math vs from math import *) 
 Math operations (math.sqrt, %, /, //, **) 

 



Material to Review 
 Review text: 
 Part 1: chapters 3-6,  
 Part 2: chapters 8-9 

 Go over your Pre Labs 

 Go over your Lab Solutions 

 Understand the results of the various clicker questions 



= vs == 
 In Python we use “=“ for assignment 
 Example: x = 5 
 This sets the variable x to the value 5 

 In Python we use “==“ to test equality 
 Example: print(x==5) 
 This will check if x is equal to 5 and then print True if it is, 

or False if it is not 
 Typically used in conjunction with an if statement 



Functions 
 Functions allow us to “name” a region of code in a 

similar fashion that a variable allows us to name a 
value 

 Functions provide us a mechanism to reuse code 

def name(input) : 
     code to execute when function is called 
     return (output) 



def name(input) : 
     code to execute when function is called 
     return output 

Abstract: 

x = 3 
y = 4 
def myFun(a, b) : 
     z = a + b               <--- this creates a local variable 
     return z 
x = myFun(x, y)         <--- this is the call site 
print (x)                        <--- this prints 7 
print (y)                        <--- this prints 4 

Concrete: 



Local vs Global Variables 
 Functions introduce a new “scope” 
 This scope defines the lifetime of local variables 
 The scope is the function body 

def name(input) : 
     code to execute    <--- scope of local variables 
     return output 



Local vs Global Variables 

a = 3 
b = 4 
def myFun(a, b) : 
     b = a + b           <--- b is a local variable 
     return b 
a = myFun(a, b)         <--- this is the call site 
print (a)                        <--- this prints 7 
print (b)                        <--- this prints 4 



Local vs Global Variables 

a = 3 
b = 4 
def myFun(x, y) : 
     global b 
     b = x + y           <--- this assigns to the global variable 
     return b 
a = myFun(a, b)         <--- this is the call site 
print (a)                        <--- this prints 7 
print (b)                        <--- this prints 7 



Important Concepts 
 Only ONE return is ever executed 
 The return ends execution of the function 
 If there are statements after the executed return they are 

ignored! 

 If there is no return that is executed the function returns 
the special python value: None 

 The return specifies the value that the function 
“outputs” 
 If you return a variable the function outputs the value 

stored in that variable 
 



Examples 

def noReturn(a): 
    x = a + 5 
    y = x + 5 
    print (y) 
x = noReturn(10) 
print (x) 

def noReturn(a): 
    if a > 30: 
         return -1 
    x = a +5 
    y = x + 5 
    print (y) 
x = noReturn(10) 
print (x) 



Loops 
 Loops allow us to execute a “set of actions” some 

number of times 
 The number of times is specified differently for the two 

types of loops 

 There are two types of loops 
 For Loops and While Loops 

 We call the execution of the body of the loop an 
iteration 



For Loops 
 For loops allow us to execute the body of the loop once 

for each element in a sequence 
 A sequence can be either a Range, a List, or a String 

 For loops assign to the variable each element of the 
sequence: 
 For a list each element of the list 
 For a string each character of the string 
 For a range each number in the range 

 The value of the variable changes with each iteration of 
the loop 

for variable in sequence : 
     code to execute for each element in the sequence 



for variable in sequence : 
     code to execute for each element in the 
sequence 

Abstract: 

str = “hello” 
for char in str : 
     print(char) 
for num in [0,1,2,3,4,5] : 
     print(num) 
for p in range(10, 0, -2) : 
     print(p) 

Concrete: 



While Loops 
 While loops allow us to execute the body of the loop 

until the loop condition is false 

 The loop condition is checked prior to the execution of 
the loop body (and on every iteration) 

while (condition) : 
     code to execute until condition is false 



while (condition) : 
     code to execute until condition is false 

Abstract: 

str = “hello” 
i = 0 
while (i < len(str)) : 
     print(str) 
     i = i +1 

Concrete: 



Nested Loops 
 We know that each statement in the body of a loop is 

executed for each iteration 
 What happens if we have a loop nested within another 

loop? 

for x in range(0, 10) : 
     for y in range(0, 100):   < --- this loop is the body 
           print (y)                                  of the outer loop 
         print (x) 



Conditionals 
 Conditionals allow us to test for a condition and 

execute based on whether the condition is True or 
False 

if condition : 
     code to execute if condition is True 
else: 
     code to execute if condition is False 



if condition : 
     code to execute if condition is True 
else: 
     code to execute if condition is False 

If x==5 : 
     x = 4 
else: 
     x = 3 
print (x) 

Abstract: 

Concrete: 



Things to remember 
 The else clause is optional 

 There MUST be a condition to check after an elif  
 The else clause is still optional here too 

 Anything we can express with elif we can express with 
a nested if 

if x < 10: 
    print(“Hello”) 
else: 
    if y > 30: 
        print(“World”) 

if x < 10: 
    print(“Hello”) 
elif y > 30: 
    print(“World”) 



 Python interprets non-Boolean expressions when they 
appear in a conditional: 
    if x: 
       <statements> 

 

 [ ], 0, “” are all considered False 

 Nonempty lists, nonempty strings, nonzero numbers 
are understood as True 



Strings and Lists 
 Strings are defined by quotation marks 
 Example:   “this is a string” 
 Example:  “””this is a string””” 

 List are defined by [] 
 Example:  [0,1,2,3,4,5] 

 Strings and lists are 0 indexed 
 We mean that the logically first element in either the 

string or list occurs at the 0th position 



Example: Reversing Strings 
def reverse(str): 
   output = "”  
   for i in str: 
       output = i + output   
   print (output) 



Indexing 
 X[k] means: 
 Element k+1 in a list 
 Character k+1 in a string 

 If lists are nested, we can refer to them by multiple 
indexing from outside in: 
 
X = [1,2, [3,[4]],5] 
X[2] == [3,[4]] 
X[2][1] == [4] 
X[2][1][0] == 4 



Negative indexing 
 For S a string or list: 
 S[0] == S[-len(S)] 
 S[1] == S[-len(S)+1] 
        … 
 S[len(S)-1] == S[-1] 



Slice 
 If S is a string, then S[3:7] is the substring beginning at 

character S[3] and ending with S[6] as the last 
character. 

 len(S[3:7]) is 4 

 If the lower bound is omitted, it is assumed to be 0 
S[:5] is the substring of length5 starting with S[0] 

 If the upper bound is omitted, it is assumed to be len(S) 



CQ: What is S[:] ? 
A. S 

B. S[0:0] 

C. S[0:len(S)] 



Slicing Lists 
 Works just as slicing strings 



List operations 
 Let L be a list, L1 another list 

 L.append(x) adds x as additional element to L 

 L.reverse() reverses list L 

 L[k] = v assigns value v as replacement value of L[k] 

 L.insert(p,x) inserts x as additional element into L at 
position [p] 

 L.remove(p) deletes L[p] 

 L.index(k) is the same as X[k] 



String operations 
 Let S be a string 

 S.upper() converts all alphabetic characters to upper 
case 

 S.lower() converts all alphabetic characters to lower 
case 

 S.capitalize() converts the first character to upper case 
and all other alphabetic characters to lower case 

 S.reverse()  throws an error 
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