Announcements

- My office hours have changed: Now Wed., 10:00-12:00
- No office hours this Friday, Oct. 12
- Read chapter 10, encodings
- Work on project 3

Data Structures

- So far, we have seen native data structures:
- Simple values: int, float, Boolean
- Sequences:
- Range, string, list
- Tuple, dictionary (chapter 11)
- There are many more useful data structures, not part of the Python language
- How can we get and use those data structures?

Encoded data structures

- Our first encoding: matrices
- What is a matrix?

$$
A=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right)
$$

- Python does not have this data structure natively, so we need to encode it
- Two tasks are needed
- We need to store the matrix entries
- We need to find and access them

Matrix indexing

- Matrix

$$
A=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right)
$$

- "Native indexing," familiar from mathematics:

$$
A[1,2]=2, A[2,1]=4, A[2,3]=6
$$

- Python encoded indexing:
- Could mimic native encoding, but best done zero-up: $A[1,2]=\mathrm{A}[0][1], \quad A[2,1]=\mathrm{A}[1][0], \quad A[2,3]=\mathrm{A}[1][2]$
- So, how does the Python encoded indexing work?

Matrix encoding

- Matrix

$$
A=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right)
$$

- Encode matrix as a list:
- $A=[1,2,3,4,5,6]$
- Python encoded indexing requires a mapping:
- All elements of $A[0][\mathrm{k}]$ are first, as A[k]
- All elements of $A[1][\mathrm{k}]$ come next, as $A[3+\mathrm{k}]$
- 3 is the row length
- In general, element $A[i][k]$ is in position $[i * r+k]$, where r is the row length

Does this work?

- We lose a bit of information in this encoding
- Which numbers correspond to which row
- We must explicitly keep track of rows through a row length variable

$$
B=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0.5 & 3 & 4 \\
-1 & -3 & 6
\end{array}\right)
$$

$B=[1,0,0,0.5,3,4,-1,-3,6]$
rowLength $=3$
B[rowLength*y $+x$]

Let's check

$$
B=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0.5 & 3 & 4 \\
-1 & -3 & 6
\end{array}\right)
$$

$B=[1,0,0,0.5,3,4,-1,-3,6]$ rowLength $=3$

B[rowLength*y +x]

$$
\begin{array}{lll}
x=0 & x=1 & x=2 \\
y=0 & y=1 & y=1 \\
B\left[3^{*} 0+0\right] & B\left[3^{*} 1+1\right] & B\left[3^{*} 1+2\right]
\end{array}
$$

CQ: which mapping?

- $A=\left(\begin{array}{lll}0 & 1 & 2 \\ 5 & 4 & 3\end{array}\right)$ stored as list $A=[0,1,2,5,4,3]$, indexed zero-up: $\mathrm{A}[1][1]=4$
def get_Elt_1(i, k, A):
p = i*3 + k return $A[p]$
def get_Elt_2(i, $k, A):$ $p=k * 3+i$ return $A[p]$
A) get_Elt_1
B) get_Elt_2
C) get_Elt_3
def get_Elt_3(i, k, A):

$$
\begin{aligned}
& p=i * 3+k-1 \\
& \text { return } A[p]
\end{aligned}
$$

Another way to encode a Matrix

- Lets take a look at our example matrix

$$
B=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0.5 & 3 & 4 \\
-1 & -3 & 6
\end{array}\right)
$$

- What about this?
- $B=[[1,0,0],[0.5,3,4],[-1,-3,6]]$

Better matrix encoding

- Matrix

$$
A=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right)
$$

- Encode matrix as a list of lists, each row a list:
- $A=[[1,2,3],[4,5,6]]$
- Python encoded indexing is now :
- All elements of $\mathrm{A}[0][\mathrm{k}]$ are the first row
- All elements of A[1][k] are the second row
- The row length is reflected in the encoding structure
- In general, element $A[i][k]$ is what we want, but with zero indexing:

$$
A[i, k]=\mathrm{A}[i-1][\mathrm{k}-1]
$$

Why is this important?

- We can now write code that more closely resembles mathematical notation
- i.e., we can use x and y to index into our matrix

$$
\begin{aligned}
& B=[[1,0,0],[0.5,3,4],[-1,-3,6]] \\
& \text { for } x \text { in range }(3): \\
& \text { for } y \text { in range }(3) \text { : } \\
& \quad \text { print }(B[x][y])
\end{aligned}
$$

How do we get simple matrices programmed?

- Recall: we can use the "*" to create a multi element sequence:
- 6 * [0] results in a sequence of 60 's -- $[0,0,0,0,0,0]$
- 3 * $[0,0]$ results in a sequence of 60 's -- $[0,0,0,0,0,0]$
- $10 *[0,1,2]$ results in what?

What is going on under the hood?

- Python uses some algebraic conventions
- 3 * $[0,0]$ is short for
- $[0,0]+[0,0]+[0,0]$
- We know that "+" concatenates two sequences together

Another way to define lists

- The '*' construct works for repeating the same thing:
- 3 * [1,2] yields [1,2,1,2,1,2]
- Leveraging the for loop:
- [<elt> for <index> in range(<value>)]
- creates a list executing the for-loop:
- L=[]
for k in range(<value>): L.append(<elt>)
- Example: [0 for i in range(6)] $\equiv[0]^{*} 6$ and yields $[0,0,0,0$,0,0]
- Example: [k for k in range(3)] yields [0, 1, 2]
- What does this do: [2*[0] for i in range(3)]?

Defining simple matrices

- 4-by-4 all zero matrix:
[4*[0] for k in range(4)]
- 5-by-5 identity matrix:

M = [5*[0] for j in range(5)] for j in range(5):

$$
M[j][j]=1
$$

Adding two matrices

$\mathrm{M} 3[\mathrm{i}][\mathrm{k}]=\mathrm{M} 1[\mathrm{i}][\mathrm{k}]+\mathrm{M} 2[\mathrm{i}][\mathrm{k}]$

M1 $=[[1,2,3,0],[4,5,6,0],[7,8,9,0]]$ M2 $=[[2,4,6,0],[1,3,5,0],[0,-1,-2,0]]$ M3 $=$ [$4 *[0]$ for i in range(3)]
for x in range(3):
for y in range(4): $\mathrm{M} 3[\mathrm{x}][\mathrm{y}]=\mathrm{M} 1[\mathrm{x}][\mathrm{y}]+\mathrm{M} 2[\mathrm{x}][\mathrm{y}]$

Matrix - vector multiplication

- Let A be a 3×4 matrix and V a vector of length 4 . The result is a vector W of length 3

```
W = 3*[0]
V = [1,2,3,5]
A = [[0,1,0,5],[2,3,-1,0],[0,0,3,7]]
for i in range(3):
    for k in range(4):
        W[i]=W[i]+A[i][k]*V[k]
```


Data structures

- We have constructed our first data structure!
- As the name implies, we have given structure to the data
- The data corresponds to the elements in the matrix
- The structure is a list of lists
- The structure allows us to utilize math-like notation

Homework

- Read Chapter 10 of our text (encodings)
- Work on Project 3
- If you feel not yet fluent in Python, code up some exercises or use codelab

Some points on project 3

