
Announcements
 My office hours have changed: Now Wed., 10:00-12:00

 No office hours this Friday, Oct. 12

 Read chapter 10, encodings

 Work on project 3

Data Structures
 So far, we have seen native data structures:
 Simple values: int, float, Boolean
 Sequences:
 Range, string, list
 Tuple, dictionary (chapter 11)

 There are many more useful data structures, not part of
the Python language

 How can we get and use those data structures?

Encoded data structures
 Our first encoding: matrices

 What is a matrix?
A = 1 2 3

4 5 6

 Python does not have this data structure natively, so
we need to encode it

 Two tasks are needed
 We need to store the matrix entries
 We need to find and access them

Matrix indexing
 Matrix

𝐴 = 1 2 3
4 5 6

 “Native indexing,” familiar from mathematics:
 𝐴 1,2 = 2, 𝐴 2,1 = 4, 𝐴 2,3 = 6

 Python encoded indexing:
 Could mimic native encoding, but best done zero-up:
𝐴 1,2 = A[0][1], 𝐴[2,1] = A[1][0], 𝐴[2,3] = A[1][2]

 So, how does the Python encoded indexing work?

Matrix encoding
 Matrix

𝐴 = 1 2 3
4 5 6

 Encode matrix as a list:
 A = [1, 2, 3, 4, 5, 6]

 Python encoded indexing requires a mapping:
 All elements of A[0][k] are first, as A[k]
 All elements of A[1][k] come next, as A[3+k]
 3 is the row length

 In general, element A[i][k] is in position [i*r+k], where r is the
row length

Does this work?
 We lose a bit of information in this encoding
 Which numbers correspond to which row

 We must explicitly keep track of rows through a row
length variable

B = [1, 0, 0, 0.5, 3, 4, -1, -3, 6]
rowLength = 3
B[rowLength*y +x]

Let’s check

x = 0
y = 0
B[3*0 + 0]

B = [1, 0, 0, 0.5, 3, 4, -1, -3, 6]
rowLength = 3
B[rowLength*y +x]

x = 1
y = 1
B[3*1 + 1]

x = 2
y = 1
B[3*1 + 2]

CQ: which mapping?
 𝐴 = 0 1 2

5 4 3 stored as list A = [0,1,2,5,4,3],
 indexed zero-up: A[1][1] = 4

def get_Elt_1(i, k, A):
 p = i*3 + k
 return A[p]

def get_Elt_3(i, k, A):
 p = i*3 + k - 1
 return A[p]

def get_Elt_2(i, k, A):
 p = k*3 + i
 return A[p]

A) get_Elt_1

B) get_Elt_2

C) get_Elt_3

Another way to encode a
Matrix

 Lets take a look at our example matrix

 What about this?
 B= [[1, 0, 0], [0.5, 3, 4], [-1, -3, 6]]

Better matrix encoding
 Matrix

𝐴 = 1 2 3
4 5 6

 Encode matrix as a list of lists, each row a list:
 A = [[1, 2, 3], [4, 5, 6]]

 Python encoded indexing is now :
 All elements of A[0][k] are the first row
 All elements of A[1][k] are the second row
 The row length is reflected in the encoding structure

 In general, element A[i][k] is what we want, but with zero indexing:

𝐴[𝑖, 𝑘] = A[i-1][k-1]

Why is this important?
 We can now write code that more closely resembles

mathematical notation
 i.e., we can use x and y to index into our matrix

B = [[1, 0, 0], [0.5, 3, 4], [-1, -3, 6]]
for x in range(3):
 for y in range(3):
 print (B[x][y])

How do we get simple
matrices programmed?

 Recall: we can use the “*” to create a multi element
sequence:
 6 * [0] results in a sequence of 6 0’s -- [0, 0, 0, 0, 0, 0]
 3 * [0, 0] results in a sequence of 6 0’s -- [0, 0, 0, 0, 0, 0]
 10 * [0, 1, 2] results in what?

What is going on under the
hood?

 Python uses some algebraic conventions
 3 * [0, 0] is short for
 [0, 0] + [0, 0] + [0, 0]

 We know that “+” concatenates two sequences
together

Another way to define lists
 The ‘*’ construct works for repeating the same thing:
 3 * [1,2] yields [1,2,1,2,1,2]

 Leveraging the for loop:
 [<elt> for <index> in range(<value>)]
 creates a list executing the for-loop:
 L = []

for k in range(<value>): L.append(<elt>)

 Example: [0 for i in range(6)] ≡ [0]*6 and yields [0, 0 ,0 ,0
,0 ,0]

 Example: [k for k in range(3)] yields [0, 1, 2]

 What does this do: [2*[0] for i in range(3)]?

Defining simple matrices
 4-by-4 all zero matrix:

 [4*[0] for k in range(4)]

 5-by-5 identity matrix:
 M = [5*[0] for j in range(5)]
 for j in range(5):
 M[j][j] = 1

Adding two matrices

M1 = [[1, 2, 3, 0], [4, 5, 6, 0], [7, 8, 9, 0]]
M2 = [[2, 4, 6, 0], [1, 3, 5, 0], [0, -1, -2, 0]]
M3= [4*[0] for i in range(3)]

for x in range(3):
 for y in range(4):
 M3[x][y]= M1[x][y]+M2[x][y]

M3[i][k] = M1[i][k] + M2[i][k]

Matrix – vector multiplication
 Let A be a 3 × 4 matrix and V a vector of length 4. The

result is a vector W of length 3

W = 3*[0]
V = [1,2,3,5]
A = [[0,1,0,5],[2,3,-1,0],[0,0,3,7]]
for i in range(3):
 for k in range(4):
 W[i]=W[i]+A[i][k]*V[k]

Data structures
 We have constructed our first data structure!
 As the name implies, we have given structure to the data
 The data corresponds to the elements in the matrix
 The structure is a list of lists
 The structure allows us to utilize math-like notation

Homework
 Read Chapter 10 of our text (encodings)

 Work on Project 3

 If you feel not yet fluent in Python, code up some
exercises or use codelab

Some points on project 3

	Announcements
	Data Structures
	Encoded data structures
	Matrix indexing
	Matrix encoding
	Does this work?
	Let’s check
	CQ: which mapping?
	Another way to encode a Matrix
	Better matrix encoding
	Why is this important?
	How do we get simple matrices programmed?
	What is going on under the hood?
	Another way to define lists
	Defining simple matrices
	Adding two matrices
	Matrix – vector multiplication
	Data structures
	Homework
	Some points on project 3

