
Announcements 
 My office hours have changed: Now Wed., 10:00-12:00 

 No office hours this Friday, Oct. 12 

 Read chapter 10, encodings 

 Work on project 3 



Data Structures 
 So far, we have seen native data structures: 
 Simple values: int, float, Boolean 
 Sequences: 
 Range, string, list 
 Tuple, dictionary (chapter 11) 

 There are many more useful data structures, not part of 
the Python language 

 How can we get and use those data structures? 

 

 



Encoded data structures 
 Our first encoding: matrices 

 What is a matrix? 
A = 1 2 3

4 5 6  

 Python does not have this data structure natively, so 
we need to encode it 

 Two tasks are needed 
 We need to store the matrix entries 
 We need to find and access them 



Matrix indexing 
 Matrix 

𝐴 = 1 2 3
4 5 6  

 “Native indexing,” familiar from mathematics:  
        𝐴 1,2 = 2,  𝐴 2,1 = 4,  𝐴 2,3 = 6 

 Python encoded indexing: 
 Could mimic native encoding, but best done zero-up: 
𝐴 1,2  = A[0][1],  𝐴[2,1] = A[1][0],   𝐴[2,3] = A[1][2] 

 So, how does the Python encoded indexing work? 



Matrix encoding 
 Matrix 

𝐴 = 1 2 3
4 5 6  

 Encode matrix as a list: 
 A = [1, 2, 3, 4, 5, 6] 

 Python encoded indexing requires a mapping: 
 All elements of A[0][k] are first, as A[k] 
 All elements of A[1][k] come next, as A[3+k] 
 3 is the row length 

 In general, element A[i][k] is in position [i*r+k], where r is the 
row length 



Does this work? 
 We lose a bit of information in this encoding 
 Which numbers correspond to which row 

 We must explicitly keep track of rows through a row 
length variable 

 

B = [1, 0, 0, 0.5, 3, 4, -1, -3, 6] 
rowLength = 3 
B[rowLength*y +x] 



Let’s check 

x = 0 
y = 0 
B[3*0 + 0] 

B = [1, 0, 0, 0.5, 3, 4, -1, -3, 6] 
rowLength = 3 
B[rowLength*y +x] 

x = 1 
y = 1 
B[3*1 + 1] 

x = 2 
y = 1 
B[3*1 + 2] 



CQ: which mapping? 
 𝐴 = 0 1 2

5 4 3   stored as list A = [0,1,2,5,4,3],  
                          indexed zero-up: A[1][1] = 4 

def get_Elt_1(i, k, A): 
     p = i*3 + k 
     return A[p] 

def get_Elt_3(i, k, A): 
     p = i*3 + k - 1 
     return A[p] 

def get_Elt_2(i, k, A): 
     p = k*3 + i 
     return A[p] 

A) get_Elt_1 

B) get_Elt_2 

C) get_Elt_3 



Another way to encode a 
Matrix 

 Lets take a look at our example matrix 

 

 

 

 What about this? 
 B= [[1, 0, 0], [0.5, 3, 4], [-1, -3, 6]] 

 



Better matrix encoding 
 Matrix 

𝐴 = 1 2 3
4 5 6  

 Encode matrix as a list of lists, each row a list: 
 A = [ [1, 2, 3], [4, 5, 6] ] 

 Python encoded indexing is now : 
 All elements of A[0][k] are the first row 
 All elements of A[1][k] are the second row 
 The row length is reflected in the encoding structure 

 In general, element A[i][k] is what we want, but with zero indexing: 

𝐴[𝑖, 𝑘] = A[i-1][k-1] 



Why is this important? 
 We can now write code that more closely resembles 

mathematical notation 
 i.e., we can use x and y to index into our matrix 

 
 

B = [[1, 0, 0], [0.5, 3, 4], [-1, -3, 6]] 
for x in range(3): 
  for y in range(3): 
      print (B[x][y]) 



How do we get simple 
matrices programmed? 

 Recall: we can use the “*” to create a multi element 
sequence: 
 6 * [0]  results in a sequence of 6 0’s -- [0, 0, 0, 0, 0, 0] 
 3 * [0, 0] results in a sequence of 6 0’s -- [0, 0, 0, 0, 0, 0] 
 10 * [0, 1, 2]  results in what? 



What is going on under the 
hood? 

 Python uses some algebraic conventions 
 3 * [0, 0]   is short for 
 [0, 0] + [0, 0] + [0, 0] 

 We know that “+” concatenates two sequences 
together 



Another way to define lists 
 The ‘*’ construct works for repeating the same thing: 
 3 * [1,2] yields [1,2,1,2,1,2] 

 Leveraging the for loop: 
 [ <elt>  for  <index> in range(<value>) ] 
 creates a list executing the for-loop: 
 L = [ ] 

for k in range(<value>): L.append(<elt>) 

 Example:  [ 0 for i in range(6)] ≡ [0]*6 and yields [0, 0 ,0 ,0 
,0 ,0] 

 Example: [ k  for k in range(3)] yields [0, 1, 2] 

 What does this do: [2*[0] for i in range(3)]? 



Defining simple matrices 
 4-by-4 all zero matrix: 

      [4*[0] for k in range(4)] 

 5-by-5 identity matrix: 
   M = [5*[0] for j in range(5)] 
   for j in range(5): 
      M[j][j] = 1 



Adding two matrices 

M1 = [ [1, 2, 3, 0], [4, 5, 6, 0], [7, 8, 9, 0] ] 
M2 = [ [2, 4, 6, 0], [1, 3, 5, 0], [0, -1, -2, 0] ] 
M3= [ 4*[0] for i in range(3) ] 
 
for x in range(3): 
    for y in range(4): 
        M3[x][y]= M1[x][y]+M2[x][y] 

M3[i][k] = M1[i][k] + M2[i][k] 



Matrix – vector multiplication 
 Let A be a 3 × 4 matrix and V a vector of length 4.  The 

result is a vector W of length 3 
 
W = 3*[0] 
V = [1,2,3,5] 
A = [[0,1,0,5],[2,3,-1,0],[0,0,3,7]] 
for i in range(3): 
   for k in range(4): 
      W[i]=W[i]+A[i][k]*V[k] 

 



Data structures 
 We have constructed our first data structure! 
 As the name implies, we have given structure to the data 
 The data corresponds to the elements in the matrix 
 The structure is a list of lists 
 The structure allows us to utilize math-like notation 

 



Homework 
 Read Chapter 10 of our text (encodings) 

 Work on Project 3 

 If you feel not yet fluent in Python, code up some 
exercises or use codelab 



Some points on project 3 
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