
Topics
 This week:
 File input and output
 OS module and path
 encoding trees

Python Programming, 2/e 1

Project 3, todo 6
The word “extract” seems to need some lawyering… here is
what we want you to do:

 For hiding a “guest picture” in a “host picture”:
 Get the (i,k) pixel of the host, say red is aaaabbbb
 Get the (i,k) pixel of the guest, say red is ccccdddd
 Combine as (i,k) pixel of the result with red aaaacccc
 Do this for all pixels, for their red, green and blue components

 For recovering the guest picture:
 Get the (i,k) pixel, say red = aaaacccc
 Make the (i,k) pixel of the result with red cccc0000
 Do this for all pixels, for their red, green and blue components

 Operations:
 <<
 >>
 &
 |

Announcements
 Project 4: First Team Project
 To be published this Thursday, Oct 18
 Urgently: Pick a team and register it with us, or let us

know you need a team
 Instructions are on the course wiki under Projects
 Teams should be of size 3

 Mid-semester course evaluations are now open
 Course home page has details

Input/Output
 Thus far we have only been able to get input from the

user and produce output to the screen
 Limits the scope of our programs
 What if we wanted to search in a book?
 We would have to type the book into our program each

time!

 Our output was limited by what we could display to the
screen
 After our program completed the output was gone!

Files: Multi-line Strings
 A file is a sequence of data that is stored in secondary,

persistent memory (such as a disk drive).

 Files can contain any data type, but the easiest to work
with would be text.

 A text file usually contains more than one line of text.

 Python uses the standard newline character (\n) to
mark line breaks.

Multi-Line Strings
 Hello

World

Goodbye 32

 When stored in a file:
Hello\nWorld\n\nGoodbye 32\n

Multi-Line Strings
 This is exactly the same thing as embedding \n in print

statements.

 Remember, these special characters only affect things
when printed. They don’t do anything during evaluation.

File Processing
 The process of opening a file involves associating a

file on disk with an object in program memory.

 We can manipulate the file by manipulating this object.
 Read from the file
 Write to the file

File Processing
 When done with the file, it needs to be closed. Closing

the file causes any outstanding operations and other
bookkeeping for the file to be completed.

 In some cases, not properly closing a file could result in
data loss.

File Processing Example
 Reading a file into a word processor
 File opened for input
 Contents read into RAM
 File closed
 Changes to the file are made to the copy stored in

memory, not on the disk.

 Save:
 Backup copy of file made
 File opened for output
 RAM version written to file
 File closed

File Processing
 Working with text files in Python
 Associate a file with a file object using the open function

<filevar> = open(<name>, <mode>)

 Name is a string with the actual file name on the disk. The
mode is either ‘r’ or ‘w’ depending on whether we are
reading or writing the file.
 There are also other modes

 Infile = open("numbers.dat", "r")

File Methods
 <file>.read() – returns the entire remaining

contents of the file as a single (possibly large,
multi-line) string

 <file>.readline() – returns the next line of the
file. This is all text – up to and including the
next newline character at the end of the line

 <file>.readlines() – returns a list of the
remaining lines in the file. Each list item is a
single line including the newline characters.

File Processing

 Prompt the user for a file name

 Open the file for reading

 The file is read as one single string and stored in the
variable named data

Prints a file to the screen.
def main():
 fname = input("Enter filename: ")
 infile = open(fname,'r')
 data = infile.read()
 print(data)
 infile.close()
main()

File Processing
 readline can be used to read the next line from a file,

including the trailing newline character

 infile = open(someFile, "r")
for i in range(5):
 line = infile.readline()
 print (line[:-1])
infile.close()

 This reads the first 5 lines of a file, then closes it

 Slicing is used to strip out the newline characters at the
ends of the lines

File Processing
 Another way to loop through the contents of a file is to

read it in with readlines and then loop through the
resulting list.

 infile = open(someFile, "r")
for line in infile.readlines():
 # Line processing here
infile.close()

File Processing
 Python treats the file object itself as a sequence of

lines!

 infile = open(someFile, "r")
for line in infile:
 # process the line here
infile.close()

File Processing
 Opening a file for writing prepares the file to receive

data

 If you open an existing file for writing, you wipe out the
file’s contents. If the named file does not exist, a new
one is created.

 Outfile = open("mydata.out", "w")

 Actual writing:
 print(<expressions>, file=Outfile)
 Outfile.write(<string>)
 Print takes multiple arguments; write only one, a string

Example Program: Batch
Usernames

 Batch mode processing is where program input and
output are done through files (the program is not
designed to be interactive)

 Let’s create usernames for a computer system where
the first and last names come from an input file.

Helpful String Method
 One of these methods is split. This will split a string into

substrings based on spaces.

>>> "Hello string methods!".split()

['Hello', 'string', 'methods!']

Another String Method
 Split can be used on characters other than space, by

supplying the character as a parameter.

>>> "32,24,25,57".split(",")

['32', '24', '25', '57']

>>>

CQ: How many?
What does the following program print?

S = "a,b,,d,e"
print(len(S.split(",")))

A. 8

B. 5

C. 4

Python Programming, 2/e 22

Example Program: Batch
Usernames

userfile.py
Program to create a file of usernames in batch mode.

def main():
 print ("This program creates a file of usernames from a")
 print ("file of names.")

 # get the file names
 infileName = input("What file are the names in? ")
 outfileName = input("What file should the usernames go in? ")

 # open the files
 infile = open(infileName, 'r')
 outfile = open(outfileName, 'w')

Example Program: Batch
Usernames

 # process each line of the input file
 for line in infile:
 # get the first and last names from line
 first, last = line.split()
 # create a username
 uname = (first[0]+last[:7]).lower()
 # write it to the output file
 outfile.write(uname+”\n”)

 # close both files
 infile.close()
 outfile.close()
 print("Usernames have been written to", outfileName)

Example Program: Batch
Usernames

 Things to note:
 It’s not unusual for programs to have multiple files

open for reading and writing at the same time.
 The <string>.lower() method is used to convert the

names into all lower case, in the event the names
are mixed upper and lower case.

 We manually added a newline “\n” after each name,
this ensures each id is on a separate line
 What happens if we do not do this?

 When we split the string we were “parsing”

Methods on Files
 object.method() syntax: this time files are our object
 Example: file = open(“myfile”, “w”)

 file.read() -- reads the file as one string

 file.readlines() – reads the file as a list of strings

 file.readline() – reads one line from the file

 file.write() – allows you to write a string to a file

 file.close() – closes a file

Announcements
 Project 4: First Team Project
 To be published today
 Urgently: Pick a team and register it with us, or let us

know you need a team
 Instructions are on the course wiki under Projects
 Teams should be of size 3

 Mid-semester evaluations are now open
 Course home page has details

Example: Writing to a File
def formLetter(gender ,lastName,city):
 file = open("formLetter.txt",”w")
 file.write("Dear ")
 if gender =="F":
 file.write("Ms. "+lastName+":\n")
 if gender =="M":
 file.write("Mr. "+lastName+":\n")
 file.write("I am writing to remind you of the offer ")
 file.write("that we sent to you last week. Everyone in ")
 file.write(city+" knows what an exceptional offer this is!")
 file.write("Sincerely ,\n")
 file.write("I.M. Acrook, Attorney at Law")
 file.close()

Example: result
>>> formLetter("M","Guzdial","Decatur”)

Dear Mr. Guzdial:

I am writing to remind you of the offer that we sent to
you last week. Everyone in Decatur knows what an
exceptional offer this is!

Sincerely,

I.M. Acrook, Attorney at Law

File Output is Important
 Allows your programs to produce results that are

viewable by other programs

 Allows you to retain computed results after a program
terminates

Python’s Standard Library
 Python has an extensive library

of modules that come with it.

 The Python standard library
includes modules that allow us
to access the Internet, deal with
time, generate random
numbers, and…access files in a
directory.

Accessing pieces of a module
 We access the additional capabilities of a module using

dot notation, after we import the module.

 How do you know what code is there?
 Check the online documentation.
 There are books like Python Standard Library that

describe the modules and provide examples.

The OS Module
 The OS module provides an interface to the underlying

operating system
 Allows your program to request resources/actions to be

performed on your program’s behalf

 os.chdir(path) – changes the current working directory

 os.listdir(path) – returns a list of all entries in the
directory specified by path

 os.curdir – returns what directory the program is
executing in (i.e. the current directory)

The OS Path submodule
 Once you import os – import os – you can also use the

path module

 os.path.isfile(path) – returns true if the path specified is
a file, returns false otherwise
 Use this method to perform a check to see if the user

provided input for a valid file

Example: error checking

import os
def chkPath():
 path = input("type a file name: ")
 if os.path.isfile(path):
 return True,path
 else:
 return False,path
def main():
 chk = True
 while chk:
 chk,file = chkPath()
 if chk: print('file', file, 'exists')
 else: print('file', file,'does not exist')

main()

Trees
 Tree data structure

 Encoding and access

 Some uses and operations

Python Programming, 2/e 36

Example: Directory trees

We call this structure a tree

Root

Root

How might we encode such a
structure?

Root

Leaf1 Leaf2 Leaf3

Tree = [‘Root’, ‘Leaf1’, ‘Leaf2’, ‘Leaf3’]

Trees can be more complex

Tree = [‘Root’, ‘Leaf1’, ‘Leaf2’, [‘Node1’, ‘Leaf3’, ‘Leaf4’, ‘Leaf5’]]

Root

Leaf1 Leaf2

Leaf3 Leaf4 Leaf5

Node1

Trees can be more complex

Tree = [‘Root’, ‘Leaf1’, ‘Leaf2’, [‘Node1’, ‘Leaf3’, ‘Leaf4’, ‘Leaf5’]]

Root

Leaf1 Leaf2

Leaf3 Leaf4 Leaf5

Node1

Trees can be more complex

Tree = [‘Root’, ‘Leaf1’, ‘Leaf2’, [‘Node1’, ‘Leaf3’, ‘Leaf4’, ‘Leaf5’]]

Root

Leaf1 Leaf2

Leaf3 Leaf4 Leaf5

Node1

Trees can be more complex

Tree = [‘Root’, ‘Leaf1’, ‘Leaf2’, [‘Node1’, ‘Leaf3’, ‘Leaf4’, ‘Leaf5’]]

Root

Leaf1 Leaf2

Leaf3 Leaf4 Leaf5

Node1

Trees can be more complex

Root

Leaf1

Leaf2

Leaf3 Leaf4 Leaf5

Tree = [‘Root’, [‘Node1’, ‘Leaf0’,‘Leaf1’], ‘Leaf2’, [‘Node2’, ‘Leaf3’, ‘Leaf4’, ‘Leaf5’]]

Leaf0

Node2 Node1

Trees can be more complex
Root

Leaf1

Leaf2

Leaf3 Leaf4

Leaf6
Tree = [‘Root’, [‘Node1’, ‘Leaf0’, ‘Leaf1’],
 ‘Leaf2’,
 [‘Node2’, ‘Leaf3’, ‘Leaf4’, [‘Node3’, ‘Leaf5’, ‘Leaf6’]]]

Leaf0

Leaf5

Node3

Node2 Node1

What is the intuition
 Each sub list encodes a ‘node’ of the tree plus the

‘branches’ of the tree

 We can think of each sub list as a ‘subtree’ rooted in
the node in the leading element position

 We can use indices (the bracket notation []) to select
out elements or subtrees

How can we select out the
leaves?

Root:
Tree[0]

Leaf1:
Tree[1]

Leaf2:
Tree[2]

Leaf3:
Tree[3]

Tree = [‘Root’, ‘Leaf1’, ‘Leaf2’, ‘Leaf3’]

Indices allow us to “traverse”
the tree

Root

Leaf1

Leaf2

Leaf3 Leaf4

Leaf6

Tree = [‘Root’, [‘Node1’, ‘Leaf0’, ‘Leaf1’],
 ‘Leaf2’,
 [‘Node2’, ‘Leaf3’, ‘Leaf4’, [‘Node3’, ‘Leaf5’, ‘Leaf6’]]]

Leaf0

Leaf5

[0]

[3][1]

[3][3][1]

[1][1] [1][2]

[1]

[3][2]

[3][3][2]

[2]
[3][3]

[3]

[1][0]
[3][0]

[3][3][0]

Node1 Node2

Node3

Indices allow us to “traverse”
the tree

Root

Leaf1

Leaf2

Leaf3 Leaf4

Leaf6

Tree[3] = [‘Node2’, ‘Leaf3’, ‘Leaf4’, [‘Node3’, ‘Leaf5’, ‘Leaf6’]]
Tree[3][3] = [‘Node3’, ‘Leaf5’, ‘Leaf6’]

Leaf0

Leaf5

Node1 Node2

Node3

Indices allow us to “traverse”
the tree

Root

Leaf1

Leaf2

Leaf3 Leaf4

Leaf6
Tree[3][0] = ‘Node2’
Tree[3][1] = ‘Leaf3’
Tree[3][2] = ‘Leaf4’
Tree[3][3] = [‘Node3’, ‘Leaf5’, ‘Leaf6’]
Tree[3][3][0] = ‘Node3’
Tree[3][3][1] = ‘Leaf5’

Leaf0

Leaf5

Node1 Node2

Node3

CQ: How do we select ‘Leaf4’
from the Tree?

Tree = [‘Root’, [‘Node1’, ‘Leaf0’, ‘Leaf1’],
 ‘Leaf2’,
 [‘Node2’, ‘Leaf3’, ‘Leaf4’, [‘Node3’, ‘Leaf5’, ‘Leaf6’]]]

A: Tree[4][3]

B: Tree[3][2]
C: Tree[8]

Example: Expressions
𝐸 = 3 ∗ 5 + 2 ∗ (6 − 1)

Python Programming, 2/e 52

+

∗ ∗

− 3 5 2

6 1

[+, [*, 3, 5], [*, 2, [-, 6, 1]]]

Operations on Trees
 Trees, since they are encoded via lists, support the

same operations that lists support.
But what do they mean?

 From a ‘tree’ perspective:
 We can make one tree subtree of another (substitution or

extension)
 We can replace a subtree with a leaf (evaluation)
 We can drop a subtree (pruning)
 We can visit each tree node in some order (e.g., depth-

first traversal, preorder traversal, etc.)

T2 as subtree of T1
(Extension)

T1 = [‘root1’, ‘leaf11’, ‘leaf12’]
T2 = [‘root2’, ‘leaf21’, ‘leaf22’, ‘leaf23’]

T1.append(T2)
T1.insert(2,T2)

Python Programming, 2/e 54

leaf11 leaf12

root1

leaf21 leaf22

root2

leaf23

leaf11 leaf12

root1

leaf21 leaf22

root2

leaf23

leaf11 leaf12

root1

leaf21 leaf22

root2

leaf23

T2 as subtree of T1
(Substitution)

T1 = [‘root1’, ‘leaf11’, ‘leaf12’]
T2 = [‘root2’, ‘leaf21’, ‘leaf22’, ‘leaf23’]

T1[2] = T2

Python Programming, 2/e 55

leaf11 leaf12

root1

leaf21 leaf22

root2

leaf23

leaf11 leaf12

root1

leaf21 leaf22

root2

leaf23

leaf11

root1

leaf21 leaf22

root2

leaf23

Tree Evaluation
Requires a notion of evaluating a list. Typical list structure
 [operation, operand, …, operand] → operand
where operands are compatible with the operation

Python Programming, 2/e 56

+

∗ ∗

− 3 5 2

6 1

+

15 ∗

− 2

6 1

Tree Evaluation
Iterable recursively

Python Programming, 2/e 57

+

∗ ∗

− 3 5 2

6 1

+

∗ 10

3 5

Tree pruning
 Example: Computer Chess
 Tree records possible moves and responses to some depth

(around 6)
 Each subtree is graded by how desirable its result configuration

is. Undesirable choices are dropped

T = [‘root1’, ‘leaf1’, [‘root2’, ‘leaf21’, ‘leaf22’, ‘leaf23]’, ‘leaf12’]
del T[2]

Python Programming, 2/e 58

leaf11 leaf12

root1

leaf11 leaf12

root1

leaf21 leaf22

root2

leaf23

Tree Traversals
Preorder: +, *, 3, 5, *, 2, -, 6, 1

Post order: 3, 5, *, 2, 6, 1, -, *, +

Python Programming, 2/e 59

+

∗ ∗

− 3 5 2

6 1

[+, [*, 3, 5], [*, 2, [-, 6, 1]]]

Why are trees important?
 They are a fundamental structure in computer science

 They enable us to search very quickly, for instance
 We will revisit trees later in the course

 What have we covered so far that is simple:
 We can encode a tree as a list of lists
 Given this encoding, we can select elements like for

complex lists, using the index mechanism []

 What is more intricate:
 Tree constructions and operations arising form the

application

Announcements
 Project 4: First Team Project
 To be published today
 Urgently: Pick a team and register it with us, or let us

know you need a team
 Instructions are on the course wiki under Projects
 Teams should be of size 3

 Mid-semester evaluations are now open
 Course home page has details

	Topics
	Project 3, todo 6
	Slide Number 3
	Announcements
	Input/Output
	Files: Multi-line Strings
	Multi-Line Strings
	Multi-Line Strings
	File Processing
	File Processing
	File Processing Example
	File Processing
	File Methods
	File Processing
	File Processing
	File Processing
	File Processing
	File Processing
	Example Program: Batch Usernames
	Helpful String Method
	Another String Method
	CQ: How many?
	Example Program: Batch Usernames
	Example Program: Batch Usernames
	Example Program: Batch Usernames
	Methods on Files
	Announcements
	Example: Writing to a File
	Example: result
	File Output is Important
	Python’s Standard Library
	Accessing pieces of a module
	The OS Module
	The OS Path submodule
	Example: error checking
	Trees
	Example: Directory trees
	We call this structure a tree
	How might we encode such a structure?
	Trees can be more complex
	Trees can be more complex
	Trees can be more complex
	Trees can be more complex
	Trees can be more complex
	Trees can be more complex
	What is the intuition
	How can we select out the leaves?
	Indices allow us to “traverse” the tree
	Indices allow us to “traverse” the tree
	Indices allow us to “traverse” the tree
	CQ: How do we select ‘Leaf4’ from the Tree?
	Example: Expressions
	Operations on Trees
	T2 as subtree of T1 (Extension)
	T2 as subtree of T1 (Substitution)
	Tree Evaluation
	Tree Evaluation
	Tree pruning
	Tree Traversals
	Why are trees important?
	Announcements

