
Announcements
 Project 4 due Wed., Nov 7

 CQ: who has handed project 4 in as of right now?

(A) My team has turned in project 4

(B) My team has not turned in project 4

Announcements
 Project 5 coming soon; also a team project

 This will include the brief essay question for the team course of
Science

 The team experience essays are individual

 New course CS 290 00, Spring 2013
Contemporary Issues in a Digital World
Instructor: Robb Cutler.
Syllabus at http://cs4edu.cs.purdue.edu/cidw

http://cs4edu.cs.purdue.edu/cidw
http://cs4edu.cs.purdue.edu/cidw

Covering Chapter 11
 Dictionaries

 Tuples

 Sets

Dictionaries in Python
 Useful Analogy: an actual Dictionary

 English dictionaries provide an association between a Word and
a Definition

 We use the Word to look up the Definition

 Given a definition it would be very hard to look up the word

Dictionaries Python
 Much like a dictionary for the English language, python

dictionaries create an association between a key and a value

 Key corresponds to a Word in our analogy

 Value corresponds to a Definition

Dictionary Syntax
 A dictionary is a collection of elements

 Each element is a key:value pair

 Just like a list is defined by [] a dictionary is defined by { }

 Example:

 {‘key1’:value1, ‘key2’:value2, ‘key3’:value3}

Keys
 A key can be any immutable type (we will consider two types)

 Includes Tuples, Strings and Integers

 We use the [index] syntax to select out an element from a list,
but for a dictionary we use [key]

A = {‘key1’:value1, ‘key2’:value2,‘key3’:value3}

print(A[‘key2’])

Example: Phone Book App
 phoneBook = {‘Tom’ : ’123-4567’, ‘George’ :

‘456-7890’,
 ‘Dick’ : ‘234-5678’, ‘Harry’ :
‘345-6789’}

 names are keys, phone numbers are values

def lookup(key):
 return phoneBook[key]
lookup(‘George’)

CQ: do these programs print the
same thing?

A = [‘ike’, ‘mary’,
‘marty’]
print A[1]

A = {0:’ike’, 1:’mary’,
2:’marty’}
print A[1]

2 1

A: yes

B: no

CQ: do these programs print the
same thing?

A = [‘mike’, ‘mary’,
‘marty’]
print A[1]

A = {1:’mary’, 2:’marty’,
0:’mike’}
print A[1]

2 1

A: yes

B: no

Key Differences from Lists
 Lists are ordered sequences

 List index is implicit based on the list ordering

 Dictionaries are unordered sequences

 Keys are specified and do not depend on order

 Lists are useful for storing ordered data, dictionaries are useful
for storing relational data

 Motivating example: databases!

Key Lookup: in
 If the key is in the dictionary we get the value

 If the key is not in the dictionary, we get an error!

 Test that the key is in the dictionary:
myDict = {‘a’:1, ‘b’:2, ‘c’:3}
print(‘b’ in myDict)
print(‘d’ in myDict)
print(‘c’ not in myDict)

 This prints
True
False
False

Updating a Dictionary
 Much like a list we can assign to a dictionary

Abstract:

 dictionary[key] = newValue

Concrete Example:

A = {0:’mike’, 1:’mary’,
2:’marty’}
print (A[1])
A[1] = ‘alex’
print(A[1])

Adding to a Dictionary
 Much like a list we can append to a dictionary

Abstract:

 dictionary[newKey] = newValue

Concrete Example:

A = {0:’mike’, 1:’mary’, 2:’marty’}
print(A[1])
A[3] = ‘alex’
print(A)
 {0:’mike’, 1:’mary’, 2:’marty’,
3:’alex’}

Clicker Question: What is the
output of this code?

A = {0:’mike’, 1:’mary’, 2:’marty’,
 ‘marty’:2, ‘mike’:0, ‘mary’:1}
A[3] = ‘mary’
A[‘mary’] = 5
A[2] = A[0] + A[1]

A: {'mike': 0, 'marty': 2, 3: 'mary', 'mary': 5, 2: 'mikemary',
 1: 'mary', 0: 'mike'}

B: {'mike': 0, 'marty': 2, 'mary’:3, 'mary': 5, 2: 'mikemary',
 1: 'mary', 0: 'mike'}

C: {'mike': 0, 'marty': 2, 'mary’:3, 'mary': 5, 2:1,
 1: 'mary', 0: 'mike'}

Printing a Dictionary

A = {0:'mike', 1:'mary', 2:'marty’}
for k,v in A.iteritems():
 print(k, ":", v)
Prints: 2 : marty
 1 : mary
 0 : mike

A = {0:'mike', 1:'mary', 2:'marty’}
for k in A:
 print(k)
Prints: 2
 1
 0

Character Frequency Analysis

 We can use a dictionary to calculate the number of times a
particular letter occurs in a text

 We use characters as the keys

 The number of times that character occurs is the value

 Increment the value each time we see a character

 Initially the value starts at 0

def occurrence(text):

 myDict = {}

 for char in text:

 if char in myDict:

 myDict[char] += 1

 else:

 myDict[char]=1

 return myDict

myDict = occurrence("abracadabra")

print(myDict)

{'a': 5, 'r': 2, 'b': 2, 'c': 1, 'd': 1}

Creating a dictionary from a list
 Python provides the dict function to create a dictionary from a

list of pairs

Example: dict([(0, ‘mike’),(1, ‘mary’),(2, ‘marty’)])

 Why do I care?

 We can use the list creation short cuts to populate dictionaries!

 Examples:
dict([(x, x**2) for x in range(10)])
dict([[x, x**2] for x in range(10)])

 Note the pair (x, x**2) – it is a tuple

Tuples
 We can create pairs in python

 Example: tuple = (‘name’, 3)

 Such pairs are called tuples (see Chapter 11)

 You have used tuples in Project 4:

myImage.putpixel((x,y), (r,g,b))

 Tuples support the [] for selecting their elements

 Tuples are immutable (like strings)

Tuples
 We can think of tuples as an immutable list

 They are almost like lists,

 They are indexed like lists, but

 They do not support element assignment

 Example:

A = (‘me’, 5, 32, ‘joe’)

print A[0]

print A[3]

A[2] = 4 <--- this throws an error

A[1] = 4 <--- this throws an error

Operations on Tuples
 Concatenation:

 (1, 2, 3) + (6, 5, 4) produces (1, 2, 3, 6, 5, 4)

 3*(1,2) produces (1, 2, 1, 2, 1, 2)

 3 * (5) produces 15

 3 * (5,) produces (5, 5, 5)

 Type change

 tuple([1,2,3]) evaluates to (1, 2, 3)

 tuple(‘abc’) evaluates to (‘a’, ’b’, ’c’)

 tuple(12) evaluates to an error

 Argument of tuple() should be a sequence (iterable)

Why have Tuples?
 Guaranteed not to change in element value

 Good for debugging

 Good for optimization by Python

Sets
 Collections of immutable values

 Unordered

 Elements are unique

 Syntax:

{ expr_1, expr_2, …, expr_n }

 Elements must be “hashable”

 Strings, tuples are ok

 Lists and nonempty sets are not ok

Examples
 {1, 4, 9, 16, 25, 36, 49, 64, 81}

 {(1,2,3), 17, ‘oh henry’}

 {‘Tom’, ‘Dick’, ‘Harry’}

 {(1,1), (2,4), (3,9), (4,16)}

Basic Operations
 + and * do not work

 Set operations are methods:

 X = {1,2}
Y = {2,3}
X.union(Y) evaluates to {1,2,3} without changing X or Y

 More operations

 .union(<set>)

 .intersection(<set>)

 .symmetric_difference(<set>)

 .difference(<set>)

Main Set Operations
X = {1, 2, 3, 4}
Y = {3, 1, 5, 6}

X.union(Y) evaluates to {1, 2, 3, 4, 5, 6}
Y.union(X) evaluates to {1, 2, 3, 4, 5, 6}
X.intersection(Y) evaluates to {1, 3}
X.difference(Y) evaluates to {2, 4}
Y.difference(X) evaluates to {5, 6}

X.symmetric_difference(Y)
 evaluates to {2, 4, 5, 6}

Set Membership
 Membership:

 <expr> in <set>

 <expr> not in <set>

 Examples

2 in {1,3,5,7} evaluates to False
2 not in {1,3,5,7} evaluates to True

5 in {1,3,5,7} evaluates to True
5 not in {1,3,5,7} evaluates to False

Nota Bene
 { } creates an empty dictionary

 {{ }} throws a runtime error

 set() creates the empty set

 set(set()) evaluates to set()

 set() in set(set()) evaluates to False

 Short forms for set operations

 X & Y is the same as X.intersection(Y)

 X | Y is the same as X.union(Y)

 X ^ Y is the same as X.symmetric_difference(Y)

 X – Y is the same as X.difference(Y)

O(1) Example

def isOdd(list):
 return (len(list)%2 == 1)

>>> isOdd([0])
True
>>> isOdd([0,1])
False

Clicker Question

def getFirst(list):
 if len(list) == 0:
 return -1
 return (list[0])

A: O(n)
B: O(n2)
C: O(1)

>>> getFirst([])
-1
>>> getFirst([0,1,2,3])
0
>>> getFirst(["a", "b", "c"])
'a’

How to find an alien
 Logic Puzzle:

 You have 9 marbles. 8 marbles weigh 1 ounce each, & one marble
weighs 1.5 ounces. You are unable to determine which is the
heavier marble by looking at them. How do you find the marble
which weighs more?

Solution 1: Weigh one marble vs
another

 What is the complexity of this solution?

Finding the Complexity
 Step 1: What is our input?

 The marbles

 Step 2: How much work do we do per marble?

 We weight each marble once (except one)

 Step 3: What is the total work we did?

 8 measurements

 What if we had 100 marbles or 1000?

Clicker Question: What is the
complexity of this algorithm?

A: O(n)
B: O(n2)
C: O(1)
D: O(log n)

We can do better!
 Lets pull some intuition from our search algorithm that was

O(log n)

 We want a way to eliminated ½ (or more) of the marbles with each
measurement

 How might we do this?

 What about weighing multiple marbles at once?

The Optimal Solution
 Split the marbles into three groups

 We can then weigh two of the groups

Finding the complexity of the
optimal solution

 Step 1: What is our input?

 The marbles

 Step 2: How much work do we do per marble?

 Logarithmic

 Step 3: What is the total work we did?

 2 measurements

 What if we had 100 marbles or 1000?

What happens at each step?
 We eliminated 2/3rds of the marbles

Clicker Question: What is the
complexity of this algorithm?

A: O(n)
B: O(n2)
C: O(1)
D: O(log n)

