Announcements

® Project 4 due Wed., Nov 7

® (CQ: who has handed project 4 1n as of right now?

(A) My team has turned in project 4

(B) My team has not turned in project 4

Announcements

® Project 5 coming soon; also a team project

® This will include the brief essay question for the team course of
Science

® The team experience essays are individual

® New course CS 290 00, Spring 2013
Contemporary Issues in a Digital World
Instructor: Robb Cutler.

Syllabus at http://csdedu.cs.purdue.edu/cidw

http://cs4edu.cs.purdue.edu/cidw
http://cs4edu.cs.purdue.edu/cidw

CS 29000: Contemporary Issues in a Digital World

TECHNOLOGY is TRANSFORMING
the way you live, work, and play.

Vast amounts of
DATA are being COLLECTED
about you every day.

Do you understand the
IMPLICATIONS
of living in a digital world?

What is YOUR ROLE
in this unprecedented time of change?

We strive to answer these and other questions about the impacts of
computing both on individuals and society.

Many of the issues we'll examine are new — brought about by computers
and the Internet. Others are more established, but with effects that have
been magnified and transformed by technological innovations.

Join us as we delve into such topics as privacy and anonvmity, ethies, risk

management, data mining, education, social networks, nmrketmg, and
intellectual property in the digital wor 1d.

C5 29000 = Contemporary Issues in a Digital World
3 Credits * No Prerequisites * No Programming
Spring 2013 « Instructor: R, Cutler
Visit http://esdedu.cs. purdue.edu/cidw for more information

Covering Chapter 11

® Dictionaries
® Tuples

® Sets

I\ '

Dictionaries in Python

® Useful Analogy: an actual Dictionary

® English dictionaries provide an association between a Word and
a Definition

® We use the Wordto look up the Definition
® (G1ven a definition 1t would be very hard to look up the word

Dictionaries Python

® Much like a dictionary for the English language, python
dictionaries create an association between a key and a value

® Key corresponds to a Word in our analogy
® Value corresponds to a Definition

Dictionary Syntax

® A dictionary 1s a collection of elements
® FEach element is a key:value pair

® Just like a list 1s defined by [] a dictionary 1s defined by { }

® Example:
[‘keyl :valuel, ‘key2 :value?2, ‘key3 :value3}

Keys

® A key can be any immutable type (we will consider two types)
® [ncludes Tuples, Strings and Integers

® We use the [index] syntax to select out an element from a list,
but for a dictionary we use [key]

A = {‘keyl’ :valuel, ‘key2’:value2, ‘key3’ :value3}
print (A[‘key2’1])

Example: Phone Book App

® phoneBook={ ‘Tom’ : 123-4567 , ‘George’
‘456-7890"
Dick’ : 234-5678 , ‘Harry
345-6789")

names are keys, phone numbers are values

def lookup(key):
return phoneBook[key]
~ lookup(‘George™)

CQ: do these programs print the
same thing?

| 2
A=[‘tke’ , mary , A={0; ike’ ,1: mary
‘marty] 2: marty |}
print A[1] print A[1]
A: yes

B: no

CQ: do these programs print the
same thing?

| 2
A=['mke’ , mary , A={1: mary ,2: marty |,
‘marty] 0: mike }
print A[1] print A[1]
A: yes

B: no

Key Differences from Lists

® [ists are ordered sequences
® [st index 1s implicit based on the list ordering

® Dictionaries are unordered sequences
® Keys are specified and do not depend on order

® [sts are useful for storing ordered data, dictionaries are useful
for storing relational data

® Motivating example: databases!

Key Lookup: in

® [f the key 1s 1n the dictionary we get the value

® If the key 1s not 1n the dictionary, we get an error!

® Test that the key 1s 1n the dictionary:
myDict={ & :1, b 2, ‘¢ :3}
print(‘b in myDict)
print(d in myDict)
print(‘¢’ not in myDict)

® This prints

True
False
False

Updating a Dictionary
® Much like a list we can assign to a dictionary

Abstract:
dictionary| key| = newValue

Concrete Example:

A =10 mike" ,1; mary |
2: marty |}
print (A[1])
o Alll= ‘alex’
| print(A[1])

Adding to a Dictionary

® Much like a list we can append to a dictionary
Abstract:
dictionaryinew Key| = new Value

Concrete Example:

A={0; mike’ ,1:; mary ,2: marty }
print(A[1])
A[3]= ‘alex’
e print(A)
- [0 mike’ , 17

Clicker Question: What 1s the
output of this code?

A =10 mike’ , 1. mary ,2: marty |,
‘marty’ :2, mike :0, ‘mary :1}

A[3]= ‘mary

Al mary]=5

A[2] = A[O] + A[1]

A: {'mike" 0, 'marty": 2, 3: 'mary', 'mary": 5, 2: 'mikemary’,
l: 'mary’, 0: 'mike'}

B: {'mike" 0, 'marty"; 2, 'mary :3, 'mary': 5, 2: 'mikemary’,

- L: 'mary’, 0: mike'}

Printing a Dictionary
A = {0:'mike', 1:'mary', 2:'marty’)
for k in A:
print(k)
Prints: 2
|
0

A = {0:'mike', 1:'mary', 2:'marty’ }
for k,v 1n A.iteritems():

print(k, ":", v)
Prints; 2 : marty

Character Frequency Analysis

® We can use a dictionary to calculate the number of times a
particular letter occurs 1n a text

® We use characters as the keys
® The number of times that character occurs is the value

® Jncrement the value each time we see a character
® T[nitially the value starts at O

def occurrence (text):
myDict = {}
for char in text:
i1f char in myDict:
myDict[char] +=1
else:
myDict[char]=1
return myDict

myDict = occurrence ("abracadabra")
print (myDict)

{'a': 5, 'r': 2, 'b': 2, '¢': 1, 'd': 1}

Creating a dictionary from a list

® Python provides the dict function to create a dictionary from a
list of pairs

Example: dict([(0, ‘mike’),(1, mary),2, marty)]

® Why do [care?

® We can use the list creation short cuts to populate dictionaries!
® Examples:

dict([(x, x**2) for x 1n range(10)])

dict([[x, x**2] for x 1n range(10)])

® Note the pair (x, x**2) — 1t1s a tuple

Tuples

® We can create pairs in python
® Example: tuple =(‘name’ , 3)
® Such pairs are called ruples (see Chapter 11)

® You have used tuples in Project 4:
myImage.putpixel((x,y), (r,g,b))

® Tuples support the [] for selecting their elements

® Tuples are immutable (like strings)

Tuples

® We can think of tuples as an immutable list
® They are almost like lists,
® They are indexed like lists, but
® They do not support element assignment

® Example:
A=('me ,5,32, ‘joe)
print A[0]
print A[3]
A[2]=4 <--- this throws an error
A[l]=4 <--- this throws an error

Operations on Tuples

® (Concatenation:
® (1,2,3)+(6,5,4) produces (1,2,3,6,5,4)
® 3%(1,2) produces (1,2, 1,2, 1,2)
® 3% (5) produces 15
® 3%(5) produces (5, 5, 5)
® Type change
® tuple([1,2,3]) evaluatesto (1, 2, 3)
® tuple(‘abc’) evaluatesto (a , b , ¢)
® tuple(12) evaluates to an error

~ ® Argument of tuple() should be a sequence (iterable)

Why have Tuples?

® (Guaranteed not to change 1n element value
® (Good for debugging

® (ood for optimization by Python

Sets

® (ollections of immutable values
® Unordered
® FElements are unique

® Syntax:
{expr I, expr 2, -, expr n)

® Elements must be “hashable”
® Strings, tuples are ok

® [ists and nonempty sets are not ok

Examples
° (1,4,9,16,25,36,49, 64, 81)
® (1,2,3),17, ‘ohhenry }

e ["Tom" , Dick , Harry }
° {(1,D),24),3)9), 4,16)}

Basic Operations
® + and * do not work

® Set operations are methods:
® X={12}
Y = {23}
X.union(Y) evaluates to {1,2,3} without changing X or Y

® More operations
® ynion(<set>)
Intersection(<set>)

o
® symmetric_difference(<set>)
® difference(<set>)

Main Set Operations

X=1{1,2,3,4}

Y ={3,1,5, 6}

X.union(Y) evaluatesto {1, 2, 3,4, 5, 6}
Y .union(X) evaluatesto {1, 2, 3,4, 5, 6}
X.1intersection(Y) evaluatesto {1, 3}
X.difference(Y) evaluatesto {2, 4}

Y .difference(X) evaluatesto {5, 6}

X.symmetric_difference(Y)
evaluatesto {2,4, 5, 6}

Set Membership

® Membership:
® Jexpr> 1n <set>
® <expr> not in <set>

® Examples
21n {1,3,5,7} evaluates to
2notin {1,3,5,7} evaluates to
51n {1,3,5,7} evaluates to

S5notin {1,3,5,7} evaluates to

False
True

True
False

Nota Bene

® { } creates an empty dictionary
® {{}} throws a runtime error

® gset() creates the empty set
® set(set()) evaluates to set()
® set() 1n set(set()) evaluates to False

® Short forms for set operations
® X &Y 1sthe same as X.ntersection(Y)
® XI|Y 15 the same as X.union(Y)

® X NY 1sthe same as X.symmetric_difference(Y)
® X - Y 1sthe same as X.difference(Y)

—

O(1) Example

def 1sOdd(list): ;>> isOdd([01)
return (Ien(list)%2 == 1) rue

>>>150dd([0,1])
False

Clicker Question

def getFirst(list): >>> getFirst([])
if len(list) == 0: -1
return -1 >>> gethirst([0,1,2,3])

: 0

retum (IISt[O]) >>> getFirSt(["a”, Hbl!, "C"])

va’
A: O(n)
B: O(n?)

C: O(1)

How to find an alien

Logic Puzzle:

® You have 9 marbles. 8 marbles weigh 1 ounce each, & one marble
weighs 1.5 ounces. You are unable to determine which is the
heavier marble by looking at them. How do you find the marble
which weighs more?

Solution 1: Weigh one marble vs
another

What 1s the complexity of this solution?

Finding the Complexity

® Step 1: What 1s our input?
® The marbles

® Step 2: How much work do we do per marble?
® We weight each marble once (except one)

® Step 3: What 1s the total work we did?
® X measurements
® What if we had 100 marbles or 1000?

Clicker Question; What 1s the
complexity of this algorithm?

A: O(n)
B: O(n?)
C: O(D)

. D: O(log n) ‘ .

We can do better!

® [ets pull some 1ntuition from our search algorithm that was
O(log n)

® We want a way to eliminated 2 (or more) of the marbles with each
measurement

® How might we do this?
® What about weighing multiple marbles at once?

The Optimal Solution

Split the marbles into three groups
® We can then weigh two of the groups

Finding the complexity of the
optimal solution

® Step 1: What 1s our input?
® The marbles

® Step 2: How much work do we do per marble?
® [ogarithmic

® Step 3: What 1s the total work we did?
®) measurements
® What if we had 100 marbles or 1000?

What happens at each step?

® We eliminated 2/3rds of the marbles

Clicker Question; What 1s the
complexity of this algorithm?

A: O(n)
B: O(n?)
C: O(1)

. D: O(log n) ‘ .

