
Announcements
 Project 5 is also a team project
 This will include the brief essay question for the team

course of Science
 The essay question is to be submitted separately and

individually

 New course CS 290 00, Spring 2013
Contemporary Issues in a Digital World
Instructor: Robb Cutler.
Syllabus at http://cs4edu.cs.purdue.edu/cidw

http://cs4edu.cs.purdue.edu/cidw

Developing Efficient
Algorithms

 Find max once in a list

 Selection sort – O(n2)

 Find max several times

 Heaps and Priority Queues

 Better repeated min finding

 Heap Sort – O(n log(n))

 Merge Sort – O(n log(n))

Finding max in List
 𝑂 𝑛 algorithm:

mp = 0
for j in range(len(L)):
 if L[mp] < L[j]:
 mp = j

 Can we do it faster?

 Well, if L were sorted, in descending order, then
 L[0] would be the max and mp==0 would be the answer
 The complexity would be 𝑂(1)

 But sorting takes time; let’s see what we can do

CQ: Arithmetic Series
Let 𝑇(𝑛) = 𝑛 + (𝑛 − 1) + (𝑛 − 2) + ⋯+ 2 + 1. Then

A. T(n) is O(n)

B. T(n) is O(n2)

C. T(n) is O(n3)

Selection Sort
 Algorithm:

1. Find max in L[0:]
2. Exchange max with L[0]
3. Repeat with L[1:], L[2:], …, L[-2]

 In Python:
N = len(L)
for k in range(N):
 mp = k
 for j in range(k+1,N):
 if L[mp] < L[j]:
 mp = j
 L[mp], L[k] = L[k], L[mp]
L is now sorted in descending order

How it works
[2,4,3,9,8] k=0
 [2,4,3,9,8] mp=0, j=1, mp=1
 [2,4,3,9,8] mp=1, j=2
 [2,4,3,9,8] mp=1, j=3, mp=3
 [2,4,3,9,8] mp=3, j=4
[9,4,3,2,8] k=1
 [9,4,3,2,8] mp=1, j=2
 [9,4,3,2,8] mp=1, j=3
 [9,4,3,2,8] mp=1, j=4, mp=4
[9,8,3,2,4] k=2
 [9,8,3,2,4] mp=2, j=3
 [9,8,3,2,4] mp=2, j=4, mp=4
[9,8,4,2,3] k=3
 [9,8,4,2,3] mp=3, j=4, mp=4
[9,8,4,3,2] k=4
[9,8,4,3,2] k=5

O(n2) – that is too much !
 Selection sort repeatedly extracts max, O(n) times

 Each max extraction is O(n) comparisons

So selection sort is O(n2) -- not very good

 Problem:
 After extracting the max, we get no help extracting the

max in the remaining slice
 Can we fix that?

Digression
 Queuing up at the gate in the airport:
 First customer at the gate is first customer on the plane
 First one into the queue is first one out

 But (almost all) airlines run a priority queue:
 Of all customer in the queue they take the one(s) with the

highest priority first!

 So, items in the queue have each a priority. We want
to take the items by decreasing priority.
 That is like extracting max repeatedly…

Two Phases using a Priority
Queue

1. Put all items in the input
list into a priority queue

2. Extract items by
decreasing magnitude
and put them into the
output list

We get a sorted list that way

[3,7,2,9,…

[9,8,7,6,…

Priority Queue Ingredients
1. A flatly-encoded full binary tree
 The node labels are the numbers we are trying to sort

2. An ordering property of the tree nodes
 Each time we insert into or delete from the queue this

ordering has to be maintained/restored

Priority Queue Ordering
 A special binary tree: filled layer by layer
 That way we don’t have to nest lists in the encoding
 Accessing nodes by an index computation

 Tree nodes are numbers (priorities)

 Locally, higher priority is above lower priority in the tree:
 x ≥ y and x ≥ z:

x

y z

≥ ≥

Full Binary Tree Indexed
 Think of a complete binary tree of arbitrary depth

 Enumerate the tree nodes, layer by layer

 Those are the indices of the encoding in which we use only a single list

 Need to explain access, insertion, deletion

2: 1:

0:

3: 4: 5: 6:

 7: 8:

Example Tree, Encoding &
Access

Tree encoding:
 [9, 6, 4, 5, 1, 2]

9

6 4

5 2 1

2: 1:

0:

3: 4: 5: 6:

Access Mappings:
 Parent to left child: 𝑘 −> 2𝑘 + 1
 Parent to right child: 𝑘 −> 2𝑘 + 2
 Child to parent: 𝑘 −> (𝑘 − 1)//2

Tree encoding:
 [9, 6, 4, 5, 1, 2]

9

6 4

5 2 1

2: 1:

0:

3: 4: 5: 6:

Mappings:
 Parent to left child: 𝑘 −> 2𝑘 + 1
 Parent to right child: 𝑘 −> 2𝑘 + 2
 Child to parent: 𝑘 −> (𝑘 − 1)//2

 At root (labeled 9, index 0), go to left child (labeled 6):
0 −> 2 ∗ 0 + 1 = 1

 At node labeled 6, index 1, go to right child (labeled 1):
1 −> 2 ∗ 1 + 2 = 4

 At child labeled 2, index 5, go to parent (labeled 4):
5 −> (5 − 1)//2 = 2

 At child labeled 4, index 2, goto parent labeled 9):
2 −> (2 − 1)//2 = 0

CQ: Is this a Priority Queue?

A. Yes

B. No

9

6 4

5 2 4

2: 1:

0:

3: 4: 5: 6:

CQ: Is this a Priority Queue?

A. Yes

B. No

9

5 4

6 2 4

2: 1:

0:

3: 4: 5: 6:

CQ: Is this a Priority Queue?

A. Yes

B. No

9

6 4

5 4

2: 1:

0:

3: 4:

CQ: Is this a Priority Queue?

A. Yes

B. No

9

6

5 4

1:

0:

3: 4:

Tree encoding:
 [9, 6, 4, 5, 1, 2]

9

6 4

5 2 1

2: 1:

0:

3: 4: 5: 6:

Mappings:
 Parent to left child: 𝑘 −> 2𝑘 + 1
 Parent to right child: 𝑘 −> 2𝑘 + 2
 Child to parent: 𝑘 −> (𝑘 − 1)//2

 If we delete any node other than the last one, it will
leave a hole in the tree and spoil the list encoding

 So we better only delete the last element in the list, i.e.,
the last leaf of the last layer (method pop())

Tree encoding:
 [9, 6, 4, 5, 1, 2, 3]

9

6 4

5 2 1 3

2: 1:

0:

3: 4: 5: 6:

Mappings:
 Parent to left child: 𝑘 −> 2𝑘 + 1
 Parent to right child: 𝑘 −> 2𝑘 + 2
 Child to parent: 𝑘 −> (𝑘 − 1)//2

 If we delete any node other than the last one, it will
leave a hole in the tree and its list encoding

 So we better only delete the last element in the list, i.e.,
the last leaf of the last layer (function pop())

 Likewise, adding requires adding at the end of the list,
i.e., the next leaf position in the last layer

Tree encoding:
 [9, 6, 4, 5, 1, 2, 3, 0]

9

6 4

5 2 1

2: 1:

0:

3: 4: 5: 6:

Mappings:
 Parent to left child: 𝑘 −> 2𝑘 + 1
 Parent to right child: 𝑘 −> 2𝑘 + 2
 Child to parent: 𝑘 −> (𝑘 − 1)//2

 If we delete any node other than the last one, it will leave a
hole in the tree and its list encoding

 So we better only delete the last element in the list, i.e., the
last leaf of the last layer (function pop())

 Likewise, adding requires adding at the end of the list, i.e.,
the next leaf position in the last layer
 If that layer is already full, we automatically start filling the next

layer

3

0
7:

Improper Delete
9

6 8

5 7 3

2: 1:

0:

3: 4: 5: 6:

6

8 5

3 7

2: 1:

0:

3: 4: 5: 6:

[9,6,8,5,3,7] [6,8,5,3,7]

Tree encoding:
 [9, 6, 4, 5, 1, 2]

9

6 4

5 2 1

2: 1:

0:

3: 4: 5: 6:

Mappings:
 Parent to left child: 𝑘 −> 2𝑘 + 1
 Parent to right child: 𝑘 −> 2𝑘 + 2
 Child to parent: 𝑘 −> (𝑘 − 1)//2

 But if we want the max element, we must take the root!!

 More than that: only deleting at the end preserves the
heap property

 What to do?

Tree encoding:
 [9, 6, 4, 5, 1, 2]

9

6 4

5 2 1

2: 1:

0:

3: 4: 5: 6:

Mappings:
 Parent to left child: 𝑘 −> 2𝑘 + 1
 Parent to right child: 𝑘 −> 2𝑘 + 2
 Child to parent: 𝑘 −> (𝑘 − 1)//2

 But if we want the max element, we must take the root!!
And we need to keep it a heap

 Take the root and plug the hole with the “last leaf”

2

6 4

5 1

2: 1:

0:

3: 4: 5: 6:

Tree encoding:
 [9, 6, 4, 5, 1, 2]
 [2, 6, 4, 5, 1]

Tree encoding:
 [9, 6, 4, 5, 1, 2]

9

6 4

5 2 1

2: 1:

0:

3: 4: 5: 6:

Mappings:
 Parent to left child: 𝑘 −> 2𝑘 + 1
 Parent to right child: 𝑘 −> 2𝑘 + 2
 Child to parent: 𝑘 −> (𝑘 − 1)//2

 Take the root and plug the hole with the “last leaf”

 Too bad that destroys the heap property 

2

6 4

5 1

2: 1:

0:

3: 4: 5: 6:

Tree encoding:
 [9, 6, 4, 5, 1, 2]
 [2, 6, 4, 5, 1]

Tree encoding:
 [9, 6, 4, 5, 1, 2]

9

6 4

5 2 1

2: 1:

0:

3: 4: 5: 6:

Mappings:
 Parent to left child: 𝑘 −> 2𝑘 + 1
 Parent to right child: 𝑘 −> 2𝑘 + 2
 Child to parent: 𝑘 −> (𝑘 − 1)//2

 Take the root and plug the hole with the “last leaf”

 If it destroys the heap property – we better fix it...

2

6 4

5 1

2: 1:

0:

3: 4: 5: 6:

Tree encoding:
 [9, 6, 4, 5, 1, 2]
 [2, 6, 4, 5, 1]

Mappings:
 Parent to left child: 𝑘 −> 2𝑘 + 1
 Parent to right child: 𝑘 −> 2𝑘 + 2
 Child to parent: 𝑘 −> (𝑘 − 1)//2

 Take the root and plug the hole with the “last leaf”

 Restoring the heap property – recursively:
 Compare inserted node x with its (up to) 2 children y and z
 If x ≥ y and x ≥ z, or x is a leaf, then stop
 Otherwise swap x and the larger of its children
 Repeat at the new position of x

2

6 4

5 1

2: 1:

0:

3: 4: 5: 6:
Tree encoding:
 [9, 6, 4, 5, 1, 2]
 [2, 6, 4, 5, 1]

x

y z

x ≥ y
x ≥ z

 Take the root and plug the hole with the “last leaf”

 Restoring the heap property – recursively:
 Compare inserted node x with its (up to) 2 children y and z
 If x ≥ y and x ≥ z, or x is a leaf, then stop
 Otherwise swap x and the larger of its children
 Repeat recursively

2

6 4

5 1

2: 1:

0:

3: 4: 5: 6:

Tree encoding:
 [9, 6, 4, 5, 1, 2]
 [2, 6, 4, 5, 1]

x

y z

x ≥ y
x ≥ z

Step 1:
 [2, 6, 4, 5, 1]
 [6, 2, 4, 5, 1]

 Take the root and plug the hole with the “last leaf”

 Restoring the heap property – recursively:
 Compare inserted node x with its (up to) 2 children y and z
 If x ≥ y and x ≥ z, or x is a leaf, then stop
 Otherwise swap x and the larger of its children
 Repeat recursively

6

2 4

5 1

2: 1:

0:

3: 4: 5: 6:

Tree encoding:
 [9, 6, 4, 5, 1, 2]
 [2, 6, 4, 5, 1]

x

y z

x ≥ y
x ≥ z

Steps:
 [2, 6, 4, 5, 1]
 [6, 2, 4, 5, 1]
 [6, 5, 4, 2, 1]

 Take the root and plug the hole with the “last leaf”

 Restoring the heap property – recursively:
 Compare inserted node x with its (up to) 2 children y and z
 If x ≥ y and x ≥ z, or x is a leaf, then stop
 Otherwise swap x and the larger of its children
 Repeat recursively

6

5 4

2 1

2: 1:

0:

3: 4: 5: 6:

Tree encoding:
 [9, 6, 4, 5, 1, 2]
 [2, 6, 4, 5, 1]

x

y z

x ≥ y
x ≥ z

Steps:
 [2, 6, 4, 5, 1]
 [6, 2, 4, 5, 1]
 [6, 5, 4, 2, 1]

6

5 4

2 1

2: 1:

0:

3: 4: 5: 6:

x

y z

x ≥ y
x ≥ z

def queueDelete(H):
 if len(H) == 0: return # queue is empty
 max = H[0]
 H[0] = H[-1]
 del H[-1]
 k, n = 0, len(H)
 while k < n:
 kL, kR = 2*k+1, 2*k+2
 if kL >= n: # at a leaf
 return max
 if kR >= n: # only left child exists
 if H[kL] > H[k]:
 H[k], H[kL] = H[kL], H[k]
 k = kL # swap -- continue the loop
 else: return max # one child and done
 # both children exist, identify the larger one
 if H[kL] > H[kR]:
 kM = kL
 else:
 kM = kR
 if H[k] >= H[kM]:
 return max
 H[k], H[kM] = H[kM], H[k]
 k = kM
 # end of while loop
 return max

Steps:
 [9, 6, 4, 5, 1, 2]
 [2, 6, 4, 5, 1]
 [6, 2, 4, 5, 1]
 [6, 5, 4, 2, 1]

Application: Sorting
 Motivation for sorting data:
 We can answer questions like min/max very efficiently
 We can search very efficiently
 What if we need to search many many times

 Many algorithms require their input to be sorted

 Heap sort uses the heap-based priority queue to
implement a sorting algorithm efficiently

Recall the Sorting Phases
1. Put all items in the list

into a priority queue

2. Extract items by
decreasing magnitude

We get a sorted list that way

But we still need to enter
items into the queue!

[3,7,2,9,…

[9,8,7,6,…

Priority Queue Insertion
 The only place to expand the queue without destroying

the tree encoding is at the end: at the next available
slot in the last layer
 If the layer is full, this starts the next layer

 This step is automatic if we just append to the list

2: 1:

0:

3: 4: 5: 6:

 7:

Heap Insertion
 What about the heap property?
 It has to be maintained and restored if necessary!

6

5 4

2 8 1

2: 1:

0:

3: 4: 5: 6:

x

y z

x ≥ y
x ≥ z

Heap Insertion
 Restoring heap property
 Compare new insertion with parent:
 If parent is greater, we are finished
 If parent is smaller, exchange

6

5 4

2 8 1

2: 1:

0:

3: 4: 5: 6:

x

y z

x ≥ y
x ≥ z

6

5 8

2 4 1

2: 1:

0:

3: 4: 5: 6:

Heap Insertion
 Restoring heap property
 Compare new insertion with parent:
 If parent is greater, we are finished
 If parent is smaller, exchange

6

5 8

2 4 1

2: 1:

0:

3: 4: 5: 6:

x

y z

x ≥ y
x ≥ z

8

5 6

2 4 1

2: 1:

0:

3: 4: 5: 6:

Heap Insertion
 Resulting code
def queueInsert(H, x):
 H.append(x)
 k = len(H)-1
 kP = (k-1)//2
 while k > 0:
 kP = (k-1)//2
 if H[k] <= H[kP]:
 return
 H[k],H[kP] = H[kP],H[k]
 k = kP
 return

8

5 6

2 4 1

2: 1:

0:

3: 4: 5: 6:

Putting it all together:
Heapsort

[3,7,2,9,…

[9,8,7,6,…

def heapSort(L):
 L1 = []
 for x in L:
 queueInsert(L1,x)
 L2 = []
 while len(L1) != 0:
 x = queueDelete(L1)
 L2.append(x)
 return L2

Complexity: Swap Path
 Deletion:
 Take out L[0], paste in L[-1]
 Compare new L[0] with its children, swap if needed
 Every swap is a step on a path from tree root to leaf
 Complexity proportional to tree height h

 Insertion
 Add at list end
 Compare with parent, swap if necessary
 Every swap is a step on the path from leaf to root
 Complexity proportional to tree height h

Complexity: Tree Stats
 With n the number of items in the list, how high is the tree?

 n height

 1: 1
 2-3: 2
 4-7: 3
 8-15: 4
 2k-(2k+1-1): k+1

 So if the list has n elements, it encodes a tree of height
𝑂(log (𝑛))

 Therefore, insertion and deletion of one element takes
𝑂(log (𝑛)) steps

Heapsort Complexity
 Two phases, each doing 𝑛-times 𝑂(log (𝑛)) work

 Total work therefore 𝑂(𝑛 log (𝑛))

Can we sort faster?
 No:
 In general, sorting in 𝑂(𝑛 log 𝑛) time is the best we can do

 But heap sort is not the only 𝑂(𝑛 log 𝑛) time sorting
algorithm

 Consider merge sort

Merge Sort

Observation 1: We can merge
two sorted lists in linear time

 What is in the input?
 Both the lists, n = total amount of elements

 Why is the complexity linear?
 We must examine each element in each of the lists
 Its linear in the total amount of elements
 O(len(list1) + len(list2)) = O(n)

Observation 1: We can merge
two sorted lists in linear time

[5,9,10, 100, 555]

[3,4,12, 88, 535]

[3]

Observation 1: We can merge
two sorted lists in linear time

[5,9,10, 100, 555]

[3,4,12, 88, 535]

[3, 4]

Observation 1: We can merge
two sorted lists in linear time

[5,9,10, 100, 555]

[3,4,12, 88, 535]

[3,4,5]

Observation 1: We can merge
two sorted lists in linear time

[5,9,10, 100, 555]

[3,4,12, 88, 535]

[3,4,5,9]

Observation 1: We can merge
two sorted lists in linear time

[5,9,10, 100, 555]

[3,4,12, 88, 535]

[3,4,5,9,10]

Observation 1: We can merge
two sorted lists in linear time

[5,9,10, 100, 555]

[3,4,12, 88, 535]

[3,4,5,9,10,12]

Observation 1: We can merge
two sorted lists in linear time

[5,9,10, 100, 555]

[3,4,12, 88, 535]

[3,4,5,9,10,12, 88]

Observation 2
 Notice that merging two lists of length one ends up

producing a sorted list of length two

[5]

[3]
[3]

[5]

[3]
[3,5]

[5]

[3]
[3,5]

Lets build the intuition for
Merge-Sort

 We know we can merge sorted lists in linear time

 We know that merging two lists of length one results in
a sorted list of length two

 Lets split our unsorted list into a bunch of lists of length
one and merge them into progressively bigger lists!
 We split a list into two smaller lists of equal parts
 Keep splitting until we have lists of length one
 Lists of length 1 are already sorted

Visual Representation

log(n)
n elements
merged

Putting it all together
 We know that there are log(n) splits
 At each “level” we split each list in two

 We know that we need to merge a total of n elements
at each “level”
 n * log(n) thus O(n log n)

	Announcements
	Slide Number 2
	Developing Efficient Algorithms
	Finding max in List
	CQ: Arithmetic Series
	Selection Sort
	How it works
	O(n2) – that is too much !
	Digression
	Two Phases using a Priority Queue
	Priority Queue Ingredients
	Priority Queue Ordering
	Full Binary Tree Indexed
	Example Tree, Encoding & Access
	Slide Number 15
	CQ: Is this a Priority Queue?
	CQ: Is this a Priority Queue?
	CQ: Is this a Priority Queue?
	CQ: Is this a Priority Queue?
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Improper Delete
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Application: Sorting
	Recall the Sorting Phases
	Priority Queue Insertion
	Heap Insertion
	Heap Insertion
	Heap Insertion
	Heap Insertion
	Putting it all together: Heapsort
	Complexity: Swap Path
	Complexity: Tree Stats
	Heapsort Complexity
	Can we sort faster?
	Merge Sort
	Observation 1: We can merge two sorted lists in linear time
	Observation 1: We can merge two sorted lists in linear time
	Observation 1: We can merge two sorted lists in linear time
	Observation 1: We can merge two sorted lists in linear time
	Observation 1: We can merge two sorted lists in linear time
	Observation 1: We can merge two sorted lists in linear time
	Observation 1: We can merge two sorted lists in linear time
	Observation 1: We can merge two sorted lists in linear time
	Observation 2
	Lets build the intuition for �Merge-Sort
	Visual Representation
	Putting it all together

