
Announcements 
 Project 5 is also a team project 
 This will include the brief essay question for the team 

course of Science 
 The essay question is to be submitted separately and 

individually 

 New course CS 290 00, Spring 2013 
Contemporary Issues in a Digital World 
Instructor: Robb Cutler.  
Syllabus at http://cs4edu.cs.purdue.edu/cidw 

http://cs4edu.cs.purdue.edu/cidw




Developing Efficient 
Algorithms 

 Find max once in a list 

 Selection sort – O(n2) 

 Find max several times 

 Heaps and Priority Queues 

 Better repeated min finding 

 Heap Sort – O(n log(n)) 

 Merge Sort – O(n log(n)) 



Finding max in List 
 𝑂 𝑛  algorithm: 

mp = 0 
for j in range(len(L)): 
    if L[mp] < L[j]: 
        mp = j 

 Can we do it faster? 

 Well, if L were sorted, in descending order, then  
 L[0] would be the max and mp==0 would be the answer 
 The complexity would be 𝑂(1) 

 But sorting takes time; let’s see what we can do 



CQ: Arithmetic Series 
Let 𝑇(𝑛)  =  𝑛 + (𝑛 − 1) + (𝑛 − 2) + ⋯+ 2 + 1. Then 

A. T(n) is O(n) 

B. T(n) is O(n2) 

C. T(n) is O(n3) 



Selection Sort 
 Algorithm: 

1. Find max in L[0: ] 
2. Exchange max with L[0] 
3. Repeat with L[1: ], L[2:], …, L[-2] 

 In Python: 
N = len(L) 
for k in range(N): 
    mp = k 
    for j in range(k+1,N): 
        if L[mp] < L[j]:  
            mp = j 
    L[mp], L[k] = L[k], L[mp] 
# L is now sorted in descending order 



How it works 
[2,4,3,9,8] k=0 
 [2,4,3,9,8]  mp=0, j=1, mp=1 
 [2,4,3,9,8]  mp=1, j=2 
  [2,4,3,9,8]  mp=1, j=3, mp=3 
 [2,4,3,9,8]  mp=3, j=4 
[9,4,3,2,8] k=1 
 [9,4,3,2,8]  mp=1, j=2 
 [9,4,3,2,8]  mp=1, j=3 
 [9,4,3,2,8]  mp=1, j=4, mp=4 
[9,8,3,2,4] k=2 
 [9,8,3,2,4]  mp=2, j=3 
 [9,8,3,2,4]  mp=2, j=4, mp=4 
[9,8,4,2,3] k=3 
 [9,8,4,2,3]  mp=3, j=4, mp=4 
[9,8,4,3,2] k=4 
[9,8,4,3,2] k=5 

 

 

 



O(n2) – that is too much ! 
 Selection sort repeatedly extracts max, O(n) times 

 Each max extraction is O(n) comparisons 

So selection sort is O(n2)  --  not very good 

 Problem: 
 After extracting the max, we get no help extracting the 

max in the remaining slice 
 Can we fix that? 



Digression 
 Queuing up at the gate in the airport: 
 First customer at the gate is first customer on the plane 
 First one into the queue is first one out 

 But (almost all) airlines run a priority queue: 
 Of all customer in the queue they take the one(s) with the 

highest priority first! 

 So, items in the queue have each a priority.  We want 
to take the items by decreasing priority. 
 That is like extracting max repeatedly… 



Two Phases using a Priority 
Queue 

1. Put all items in the input 
list into a priority queue 

2. Extract items by 
decreasing magnitude 
and put them into the 
output list  

We get a sorted list that way 

[3,7,2,9,… 

[9,8,7,6,… 



Priority Queue Ingredients 
1. A flatly-encoded full binary tree 
 The node labels are the numbers we are trying to sort 

2. An ordering property of the tree nodes 
 Each time we insert into or delete from the queue this 

ordering has to be maintained/restored  



Priority Queue Ordering 
 A special binary tree: filled layer by layer 
 That way we don’t have to nest lists in the encoding 
 Accessing nodes by an index computation 

 Tree nodes are numbers (priorities) 

 Locally, higher priority is above lower priority in the tree: 
 x ≥ y and x ≥ z: 

x 

y z 

≥ ≥ 



Full Binary Tree Indexed 
 Think of a complete binary tree of arbitrary depth 

 Enumerate the tree nodes, layer by layer 

 Those are the indices of the encoding in which we use only a single list 

 Need to explain access, insertion, deletion 

  

    

        

2: 1: 

0: 

3: 4: 5: 6: 

            7: 8:   



Example Tree, Encoding & 
Access 

Tree encoding: 
       [9, 6, 4, 5, 1, 2] 

9 

6 4 

5 2 1   

2: 1: 

0: 

3: 4: 5: 6: 

Access Mappings: 
      Parent to left child: 𝑘 −>  2𝑘 + 1 
      Parent to right child: 𝑘 −>  2𝑘 + 2 
      Child to parent: 𝑘 −>  (𝑘 − 1)//2 



Tree encoding: 
       [9, 6, 4, 5, 1, 2] 

9 

6 4 

5 2 1   

2: 1: 

0: 

3: 4: 5: 6: 

Mappings: 
      Parent to left child: 𝑘 −>  2𝑘 + 1 
      Parent to right child: 𝑘 −>  2𝑘 + 2 
      Child to parent: 𝑘 −>  (𝑘 − 1)//2 

 At root (labeled 9, index 0), go to left child (labeled 6): 
0 −>  2 ∗ 0 + 1 = 1 

 At node labeled 6, index 1, go to right child (labeled 1): 
1 −>  2 ∗ 1 + 2 = 4 

 At child labeled 2, index 5, go to parent (labeled 4): 
5 −>  (5 − 1)//2 = 2 

 At child labeled 4, index 2, goto parent labeled 9): 
2 −>  (2 − 1)//2 = 0 



CQ:  Is this a Priority Queue? 

A. Yes 

B. No 

9 

6 4 

5 2 4   

2: 1: 

0: 

3: 4: 5: 6: 



CQ:  Is this a Priority Queue? 

A. Yes 

B. No 

9 

5 4 

6 2 4   

2: 1: 

0: 

3: 4: 5: 6: 



CQ:  Is this a Priority Queue? 

A. Yes 

B. No 

9 

6 4 

5 4 

2: 1: 

0: 

3: 4: 



CQ:  Is this a Priority Queue? 

A. Yes 

B. No 

9 

6 

5 4 

1: 

0: 

3: 4: 



Tree encoding: 
       [9, 6, 4, 5, 1, 2] 

9 

6 4 

5 2 1   

2: 1: 

0: 

3: 4: 5: 6: 

Mappings: 
      Parent to left child: 𝑘 −>  2𝑘 + 1 
      Parent to right child: 𝑘 −>  2𝑘 + 2 
      Child to parent: 𝑘 −>  (𝑘 − 1)//2 

 If we delete any node other than the last one, it will 
leave a hole in the tree and spoil the list encoding 

 So we better only delete the last element in the list, i.e., 
the last leaf of the last layer (method pop()) 

 



Tree encoding: 
       [9, 6, 4, 5, 1, 2, 3] 

9 

6 4 

5 2 1 3 

2: 1: 

0: 

3: 4: 5: 6: 

Mappings: 
      Parent to left child: 𝑘 −>  2𝑘 + 1 
      Parent to right child: 𝑘 −>  2𝑘 + 2 
      Child to parent: 𝑘 −>  (𝑘 − 1)//2 

 If we delete any node other than the last one, it will 
leave a hole in the tree and its list encoding 

 So we better only delete the last element in the list, i.e., 
the last leaf of the last layer (function pop()) 

 Likewise, adding requires adding at the end of the list, 
i.e., the next leaf position in the last layer 



Tree encoding: 
       [9, 6, 4, 5, 1, 2, 3, 0] 

9 

6 4 

5 2 1 

2: 1: 

0: 

3: 4: 5: 6: 

Mappings: 
      Parent to left child: 𝑘 −>  2𝑘 + 1 
      Parent to right child: 𝑘 −>  2𝑘 + 2 
      Child to parent: 𝑘 −>  (𝑘 − 1)//2 

 If we delete any node other than the last one, it will leave a 
hole in the tree and its list encoding 

 So we better only delete the last element in the list, i.e., the 
last leaf of the last layer (function pop()) 

 Likewise, adding requires adding at the end of the list, i.e., 
the next leaf position in the last layer 
 If that layer is already full, we automatically start filling the next 

layer 

3 

0 
7: 



Improper Delete 
9 

6 8 

5 7 3 

2: 1: 

0: 

3: 4: 5: 6: 

6 

8 5 

3   7 

2: 1: 

0: 

3: 4: 5: 6: 

[9,6,8,5,3,7] [6,8,5,3,7] 



Tree encoding: 
       [9, 6, 4, 5, 1, 2] 

9 

6 4 

5 2 1   

2: 1: 

0: 

3: 4: 5: 6: 

Mappings: 
      Parent to left child: 𝑘 −>  2𝑘 + 1 
      Parent to right child: 𝑘 −>  2𝑘 + 2 
      Child to parent: 𝑘 −>  (𝑘 − 1)//2 

 But if we want the max element, we must take the root!! 

 More than that: only deleting at the end preserves the 
heap property 

 What to do? 



Tree encoding: 
       [9, 6, 4, 5, 1, 2] 

9 

6 4 

5 2 1   

2: 1: 

0: 

3: 4: 5: 6: 

Mappings: 
      Parent to left child: 𝑘 −>  2𝑘 + 1 
      Parent to right child: 𝑘 −>  2𝑘 + 2 
      Child to parent: 𝑘 −>  (𝑘 − 1)//2 

 But if we want the max element, we must take the root!! 
And we need to keep it a heap 

 Take the root and plug the hole with the “last leaf” 

2 

6 4 

5   1   

2: 1: 

0: 

3: 4: 5: 6: 

Tree encoding: 
       [9, 6, 4, 5, 1, 2] 
       [2, 6, 4, 5, 1] 



Tree encoding: 
       [9, 6, 4, 5, 1, 2] 

9 

6 4 

5 2 1   

2: 1: 

0: 

3: 4: 5: 6: 

Mappings: 
      Parent to left child: 𝑘 −>  2𝑘 + 1 
      Parent to right child: 𝑘 −>  2𝑘 + 2 
      Child to parent: 𝑘 −>  (𝑘 − 1)//2 

 Take the root and plug the hole with the “last leaf” 

 Too bad that destroys the heap property  

2 

6 4 

5   1   

2: 1: 

0: 

3: 4: 5: 6: 

Tree encoding: 
       [9, 6, 4, 5, 1, 2] 
       [2, 6, 4, 5, 1] 



Tree encoding: 
       [9, 6, 4, 5, 1, 2] 

9 

6 4 

5 2 1   

2: 1: 

0: 

3: 4: 5: 6: 

Mappings: 
      Parent to left child: 𝑘 −>  2𝑘 + 1 
      Parent to right child: 𝑘 −>  2𝑘 + 2 
      Child to parent: 𝑘 −>  (𝑘 − 1)//2 

 Take the root and plug the hole with the “last leaf” 

 If it destroys the heap property – we better fix it... 

2 

6 4 

5   1   

2: 1: 

0: 

3: 4: 5: 6: 

Tree encoding: 
       [9, 6, 4, 5, 1, 2] 
       [2, 6, 4, 5, 1] 



Mappings: 
      Parent to left child: 𝑘 −>  2𝑘 + 1 
      Parent to right child: 𝑘 −>  2𝑘 + 2 
      Child to parent: 𝑘 −>  (𝑘 − 1)//2 

 Take the root and plug the hole with the “last leaf” 

 Restoring the heap property – recursively: 
 Compare inserted node x with its (up to) 2 children y and z 
 If x ≥ y and x ≥ z, or x is a leaf, then stop 
 Otherwise swap x and the larger of its children 
 Repeat at the new position of x 

2 

6 4 

5   1   

2: 1: 

0: 

3: 4: 5: 6: 
Tree encoding: 
       [9, 6, 4, 5, 1, 2] 
       [2, 6, 4, 5, 1] 

x 

y z 

x ≥ y 
x ≥ z 



 Take the root and plug the hole with the “last leaf” 

 Restoring the heap property – recursively: 
 Compare inserted node x with its (up to) 2 children y and z 
 If x ≥ y and x ≥ z, or x is a leaf, then stop 
 Otherwise swap x and the larger of its children 
 Repeat recursively 

2 

6 4 

5   1   

2: 1: 

0: 

3: 4: 5: 6: 

Tree encoding: 
       [9, 6, 4, 5, 1, 2] 
       [2, 6, 4, 5, 1] 

x 

y z 

x ≥ y 
x ≥ z 

Step 1: 
       [2, 6, 4, 5, 1] 
       [6, 2, 4, 5, 1] 



 Take the root and plug the hole with the “last leaf” 

 Restoring the heap property – recursively: 
 Compare inserted node x with its (up to) 2 children y and z 
 If x ≥ y and x ≥ z, or x is a leaf, then stop 
 Otherwise swap x and the larger of its children 
 Repeat recursively 

6 

2 4 

5   1   

2: 1: 

0: 

3: 4: 5: 6: 

Tree encoding: 
       [9, 6, 4, 5, 1, 2] 
       [2, 6, 4, 5, 1] 

x 

y z 

x ≥ y 
x ≥ z 

Steps: 
       [2, 6, 4, 5, 1] 
       [6, 2, 4, 5, 1] 
       [6, 5, 4, 2, 1] 



 Take the root and plug the hole with the “last leaf” 

 Restoring the heap property – recursively: 
 Compare inserted node x with its (up to) 2 children y and z 
 If x ≥ y and x ≥ z, or x is a leaf, then stop 
 Otherwise swap x and the larger of its children 
 Repeat recursively 

6 

5 4 

2   1   

2: 1: 

0: 

3: 4: 5: 6: 

Tree encoding: 
       [9, 6, 4, 5, 1, 2] 
       [2, 6, 4, 5, 1] 

x 

y z 

x ≥ y 
x ≥ z 

Steps: 
       [2, 6, 4, 5, 1] 
       [6, 2, 4, 5, 1] 
       [6, 5, 4, 2, 1] 



6 

5 4 

2   1   

2: 1: 

0: 

3: 4: 5: 6: 

x 

y z 

x ≥ y 
x ≥ z 

def queueDelete(H): 
    if len(H) == 0: return  # queue is empty 
    max = H[0] 
    H[0] = H[-1] 
    del H[-1] 
    k, n = 0, len(H) 
    while k < n: 
        kL, kR = 2*k+1, 2*k+2 
        if kL >= n:     # at a leaf 
            return max 
        if kR >= n:     # only left child exists 
            if H[kL] > H[k]: 
                H[k], H[kL] = H[kL], H[k] 
                k = kL  # swap -- continue the loop 
            else: return max   # one child and done 
        # both children exist, identify the larger one 
        if H[kL] > H[kR]: 
            kM = kL 
        else: 
            kM = kR 
            if H[k] >= H[kM]: 
                return max 
        H[k], H[kM] = H[kM], H[k] 
        k = kM 
    # end of while loop 
    return max 

Steps: 
       [9, 6, 4, 5, 1, 2] 
       [2, 6, 4, 5, 1] 
       [6, 2, 4, 5, 1] 
       [6, 5, 4, 2, 1] 



Application: Sorting 
 Motivation for sorting data: 
 We can answer questions like min/max very efficiently 
 We can search very efficiently 
 What if we need to search many many times 

 Many algorithms require their input to be sorted 

 Heap sort uses the heap-based priority queue to 
implement a sorting algorithm efficiently 



Recall the Sorting Phases 
1. Put all items in the list 

into a priority queue 

2. Extract items by 
decreasing magnitude  

We get a sorted list that way 

 

But we still need to enter 
items into the queue! 

[3,7,2,9,… 

[9,8,7,6,… 



Priority Queue Insertion 
 The only place to expand the queue without destroying 

the tree encoding is at the end: at the next available 
slot in the last layer 
 If the layer is full, this starts the next layer 

 This step is automatic if we just append to the list 

  

    

        

2: 1: 

0: 

3: 4: 5: 6: 

            7: 



Heap Insertion 
 What about the heap property? 
 It has to be maintained and restored if necessary! 

6 

5 4 

2 8 1   

2: 1: 

0: 

3: 4: 5: 6: 

x 

y z 

x ≥ y 
x ≥ z 



Heap Insertion 
 Restoring heap property 
 Compare new insertion with parent: 
 If parent is greater, we are finished 
 If parent is smaller, exchange 

6 

5 4 

2 8 1   

2: 1: 

0: 

3: 4: 5: 6: 

x 

y z 

x ≥ y 
x ≥ z 

6 

5 8 

2 4 1   

2: 1: 

0: 

3: 4: 5: 6: 



Heap Insertion 
 Restoring heap property 
 Compare new insertion with parent: 
 If parent is greater, we are finished 
 If parent is smaller, exchange 

6 

5 8 

2 4 1   

2: 1: 

0: 

3: 4: 5: 6: 

x 

y z 

x ≥ y 
x ≥ z 

8 

5 6 

2 4 1   

2: 1: 

0: 

3: 4: 5: 6: 



Heap Insertion 
 Resulting code 
def queueInsert(H, x): 
    H.append(x) 
    k = len(H)-1 
    kP = (k-1)//2 
    while k > 0: 
        kP = (k-1)//2 
        if H[k] <= H[kP]: 
            return 
        H[k],H[kP] = H[kP],H[k] 
        k = kP 
    return  

8 

5 6 

2 4 1   

2: 1: 

0: 

3: 4: 5: 6: 



Putting it all together:  
Heapsort 

[3,7,2,9,… 

[9,8,7,6,… 

def heapSort(L): 
    L1 = [] 
    for x in L: 
        queueInsert(L1,x) 
    L2 = [] 
    while len(L1) != 0: 
        x = queueDelete(L1) 
        L2.append(x) 
    return L2 



Complexity: Swap Path 
 Deletion: 
 Take out L[0], paste in L[-1] 
 Compare new L[0] with its children, swap if needed 
 Every swap is a step on a path from tree root to leaf 
 Complexity proportional to tree height h 

 Insertion 
 Add at list end 
 Compare with parent, swap if necessary 
 Every swap is a step on the path from leaf to root 
 Complexity proportional to tree height h 



Complexity: Tree Stats 
 With n the number of items in the list, how high is the tree? 

 n  height 

   1: 1 
  2-3: 2 
  4-7: 3 
 8-15: 4 
 2k-(2k+1-1): k+1 

 So if the list has n elements, it encodes a tree of height 
𝑂(log (𝑛)) 

 Therefore, insertion and deletion of one element takes 
𝑂(log (𝑛)) steps 



Heapsort Complexity 
 Two phases, each doing 𝑛-times 𝑂(log (𝑛)) work 

 Total work therefore 𝑂(𝑛 log (𝑛)) 

 



Can we sort faster? 
 No: 
 In general, sorting in 𝑂(𝑛 log 𝑛) time is the best we can do 

 

 But heap sort is not the only 𝑂(𝑛 log 𝑛) time sorting 
algorithm 

 

 Consider merge sort 



Merge Sort 
 



Observation 1: We can merge 
two sorted lists in linear time 

 What is in the input? 
 Both the lists, n = total amount of elements 

 Why is the complexity linear? 
 We must examine each element in each of the lists 
 Its linear in the total amount of elements 
 O(len(list1) + len(list2)) = O(n) 



Observation 1: We can merge 
two sorted lists in linear time 

[5,9,10, 100, 555] 

[3,4,12, 88, 535] 

[3] 



Observation 1: We can merge 
two sorted lists in linear time 

[5,9,10, 100, 555] 

[3,4,12, 88, 535] 

[3, 4] 



Observation 1: We can merge 
two sorted lists in linear time 

[5,9,10, 100, 555] 

[3,4,12, 88, 535] 

[3,4,5] 



Observation 1: We can merge 
two sorted lists in linear time 

[5,9,10, 100, 555] 

[3,4,12, 88, 535] 

[3,4,5,9] 



Observation 1: We can merge 
two sorted lists in linear time 

[5,9,10, 100, 555] 

[3,4,12, 88, 535] 

[3,4,5,9,10] 



Observation 1: We can merge 
two sorted lists in linear time 

[5,9,10, 100, 555] 

[3,4,12, 88, 535] 

[3,4,5,9,10,12] 



Observation 1: We can merge 
two sorted lists in linear time 

[5,9,10, 100, 555] 

[3,4,12, 88, 535] 

[3,4,5,9,10,12, 88] 



Observation 2 
 Notice that merging two lists of length one ends up 

producing a sorted list of length two 

[5] 

[3] 
[3] 

[5] 

[3] 
[3,5] 

[5] 

[3] 
[3,5] 



Lets build the intuition for  
Merge-Sort 

 We know we can merge sorted lists in linear time 

 We know that merging two lists of length one results in 
a sorted list of length two 

 Lets split our unsorted list into a bunch of lists of length 
one and merge them into progressively bigger lists! 
 We split a list into two smaller lists of equal parts 
 Keep splitting until we have lists of length one 
 Lists of length 1 are already sorted 



Visual Representation  

log(n) 
n elements 
merged 



Putting it all together 
 We know that there are log(n) splits 
 At each “level” we split each list in two 

 We know that we need to merge a total of n elements 
at each “level” 
 n * log(n)    thus O(n log n) 
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