
Announcements 
 Project 5 is on the street.  Second part is essay 

questions for CoS teaming requirements. 
 The first part you do as a team 
 The CoS essay gets individually answered and has 

separate submission instructions 

 No office hours tomorrow 



Recursion 
 It is OK for a function  to call yourself, but you need 

some skill: 
 Identify self-similarity in the problem 
 Know when to stop 

 Think of it as cloning the function. 
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Key Insight 
 To understand and be able to program 

recursively, you must 
 Break down the problem into sub problems and  
 Join the solution of those sub problems back to 

get the solution of the original problem. 



CQ: 
Merge sort can  be done using recursion 

 

A. True 

B. False 

C. Depends 
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Recall Binary Search 
 The basic idea of the binary search algorithm was to 

iteratively divide the problem in half. 

 This technique is known as the divide and conquer 
approach in algorithm design 

 Divide and conquer divides the original problem into 
sub-problems that are smaller versions of the original 
problem. 
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Recursive Problem-Solving 
 In the binary search, the initial range is the entire list. 

We look at the middle element… if it is the target, we’re 
done. Otherwise, we continue by performing a binary 
search on either the top half or bottom half of the list. 

 In the iterative version of Binary Search, you split the 
list into half after each iteration. If the element is less 
than the middle, then you search for the lower half of 
the list in the next iteration, otherwise you search for 
the upper half of the list. 

 There is another way to similarly solve Binary Search. 
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Recursive Algorithm for 
Binary Search 

def binarySearch(key, low, high, numlist): 
    mid = (low + high)//2 
    if low > high: 
        return -1 
    if key == numlist[mid]: 
        return mid 
    elif key < numlist[mid]: 
        return binarySearch(key, low, mid-1, numlist) 
    else: 
        return binarySearch(key, mid+1, high, numlist) 
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Recursive Definitions 
 A description of something that refers to itself is called a 

recursive definition. 

 In the last example, the binary search algorithm uses its own 
description – a “call” to binary search “recurs” inside of the 
definition – hence the label “recursive definition.” 

 The function is calling itself with new parameters. If you 
notice, the parameters low and high change in every 
recursive call. 

 The parameters are local to the particular instantiation of the 
function body. 
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Recursive Definitions Rules 
 All good recursive definitions have these two key 

characteristics: 
 There are one or more base cases for which no 

recursion is applied. 
 All chains of recursion eventually end up at one of the 

base cases. 

 The simplest way for these two conditions to occur is 
for each recursion to act on a smaller version of the 
original problem. A very small version of the original 
problem that can be solved without recursion 
becomes the base case. 



Recursive Definitions: Math 
Example 

 In mathematics, recursion is frequently used. The most 
common example is the factorial: 

 For example, 5! = 5(4)(3)(2)(1), or 
5! = 5(4!) 
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! ( 1)( 2)...(1)n n n n= − −
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Factorial Recursive Definition 
 In other words, 

 

 Or   
 

 

 

 This definition says that 0! is 1, while the factorial of 
any other number is that number times the factorial of 
one less than that number. 

! ( 1)!n n n= −

1           if 0
!

( 1)!   otherwise
n

n
n n

=
=  −
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Factorial Recursive Definition 
 Our definition is recursive, but definitely not circular.  

 Circular definition will keep on going indefinitely. Recursive 
definitions on the other hand stops at one point of its 
execution 

 Consider 4! 
 4! = 4(4-1)! = 4(3!) 
 What is 3!? We apply the definition again 

4! = 4(3!) = 4[3(3-1)!] = 4(3)(2!) 
 And so on… 

4! = 4(3!) = 4(3)(2!) = 4(3)(2)(1!) = 4(3)(2)(1)(0!) = 4(3)(2)(1)(1) = 
24 
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Factorial Recursive Definition 
 Factorial is not circular because we eventually get to 0!, 

whose definition does not rely on the definition of 
factorial and is just 1. This is called a base case for the 
recursion. 

 When the base case is encountered, we get a closed 
expression that is computed directly. 
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Recursive Algorithm for 
Factorial 

 We’ve seen previously that factorial can be calculated 
using a loop accumulator. 

 Factorial can be written recursively as: 
 

def factorial(n): 
    if n == 0: 
        return 1 
    else: 
        return n * factorial(n-1) 
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Factorial: Calling recursive 
function 

>>> factorial(4) 

24 

>>> factorial(10) 

3628800 

 

 

Remember:  
each call to a function starts that function anew, with 
its own copies of local variables and parameters. 
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Example: String Reversal 
 Python lists have a built-in method that can be used to 

reverse the list. What if you wanted to reverse a string? 

 If you wanted to program this yourself, one way to do it 
would be to convert the string into a list of characters, 
reverse the list, and then convert it back into a string. 
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Example: String Reversal 
 Using recursion, we can calculate the reverse of a 

string without the intermediate list step. 

 Think of a string as a recursive object: 
 Divide it up into a first character and “all the rest” 
 Reverse the “rest” and append the first character to the 

end of it 
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Example: String Reversal 
 def reverse(s): 

    return reverse(s[1:]) + s[0] 

 The slice s[1:] returns all but the first character of the 
string. 

 We reverse this slice and then concatenate the first 
character (s[0]) onto the end. 
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Example: String Reversal 
 >>> reverse("Hello") 

 
Traceback (most recent call last): 
  File "<pyshell#6>", line 1, in -toplevel- 
    reverse("Hello") 
  File "C:/Program Files/Python 2.3.3/z.py", line 8, in 
reverse 
    return reverse(s[1:]) + s[0] 
  File "C:/Program Files/Python 2.3.3/z.py", line 8, in 
reverse 
    return reverse(s[1:]) + s[0] 
… 
 File "C:/Program Files/Python 2.3.3/z.py", line 8, in 
reverse 
    return reverse(s[1:]) + s[0] 
RuntimeError: maximum recursion depth exceeded 

 What happened? There were 1000 lines of errors! 
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Example: String Reversal 
 Remember: To build a correct recursive function, we 

need a base case that doesn’t use recursion. 

 We forgot to include a base case, so our program is an 
infinite recursion. Each call to reverse contains 
another call to reverse, so none of them return. 
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Example: String Reversal 
 Each time a function is called it takes some 

memory. Python stops it at 1000 calls, the 
default “maximum recursion depth.” 

 What should we use for our base case? 

 Following our algorithm, we know we will 
eventually try to reverse the empty string. Since 
the empty string is its own reverse, we can use 
it as the base case. 
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Example: String Reversal 
 def reverse(s): 

    if s == "": 
        return s 
    else: 
        return reverse(s[1:]) + s[0] 

 >>> reverse("Hello") 
'olleH' 
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Example: Anagrams 
 An anagram is formed by rearranging the letters of a 

word. 

 Anagram formation is a special case of generating all 
permutations (rearrangements) of a sequence, a 
problem that is seen frequently in mathematics and 
computer science. 
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Example: Anagrams 
 Let’s apply the same approach from the previous 

example. 
 Slice the first character off the string. 
 Place the first character in all possible locations within the 

anagrams formed from the “rest” of the original string. 
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Example: Anagrams 
 Suppose the original string is “abc”. Stripping 

off the “a” leaves us with “bc”. 

 Generating all anagrams of “bc” gives us “bc” 
and “cb”. 

 To form the anagram of the original string, we 
place “a” in all possible locations within these 
two smaller anagrams: [“abc”, “bac”, “bca”, 
“acb”, “cab”, “cba”] 
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Example: Anagrams 
 As in the previous example, we can use the empty 

string as our base case. 

 def anagrams(s): 
    if s == "": 
        return [s] 
    else: 
        ans = [] 
        for w in anagrams(s[1:]): 
            for pos in range(len(w)+1): 
                ans.append(w[:pos]+s[0]+w[pos:]) 
        return ans 
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Example: Anagrams 
 A list is used to accumulate results. 
 The outer for loop iterates through each 

anagram of the tail of s. 

 The inner loop goes through each position in 
the anagram and creates a new string with the 
original first character inserted into that 
position. 

 The inner loop goes up to len(w)+1 so the 
new character can be added at the end of the 
anagram. 



28 

Example: Anagrams 
 w[:pos]+s[0]+w[pos:] 
 w[:pos] gives the part of w up to, but not including, 

pos. 
 w[pos:] gives everything from pos to the end. 
 Inserting s[0] between them effectively inserts it into w 

at pos. 
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Example: Anagrams 
 The number of anagrams of a word is the factorial of 

the length of the word. 

 >>> anagrams("abc") 
['abc', 'bac', 'bca', 'acb', 'cab', 'cba'] 



Example: Ackermann 
Function 

𝐴(0, 𝑗) = 𝑗 + 1             for 𝑗 ≥  0  
𝐴(𝑖, 0) = 𝐴(𝑖 − 1, 1)  for 𝑖 >  0  
𝐴(𝑖, 𝑗) = 𝐴(𝑖 − 1, 𝐴(𝑖, 𝑗 − 1)) otherwise 

Function grows extremely fast; 𝐴(𝑘, 𝑘) grows faster than iterated 
exponentiation: 

𝐸(0)  =  2 
𝐸 𝑛 + 1 = 2𝐸 𝑛  

 
𝐸 1 = 4 
𝐸 2 = 16 
𝐸 3 = 64𝐾 
𝐸 4 = 264𝐾 
… 

 



McCarthy’s 99 Function 
𝑀 𝑛 = 𝑛 − 10  𝑖𝑖  𝑛 > 100 
𝑀 𝑛 = 𝑀(𝑀 𝑛 + 11)   𝑖𝑖  𝑛 ≤ 100 

 

Not obvious that the computation terminates… 
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