
Announcements
 Project 5 is on the street. Second part is essay

questions for CoS teaming requirements.
 The first part you do as a team
 The CoS essay gets individually answered and has

separate submission instructions

 No office hours tomorrow

Recursion
 It is OK for a function to call yourself, but you need

some skill:
 Identify self-similarity in the problem
 Know when to stop

 Think of it as cloning the function.

2

3

Key Insight
 To understand and be able to program

recursively, you must
 Break down the problem into sub problems and
 Join the solution of those sub problems back to

get the solution of the original problem.

CQ:
Merge sort can be done using recursion

A. True

B. False

C. Depends

5

Recall Binary Search
 The basic idea of the binary search algorithm was to

iteratively divide the problem in half.

 This technique is known as the divide and conquer
approach in algorithm design

 Divide and conquer divides the original problem into
sub-problems that are smaller versions of the original
problem.

6

Recursive Problem-Solving
 In the binary search, the initial range is the entire list.

We look at the middle element… if it is the target, we’re
done. Otherwise, we continue by performing a binary
search on either the top half or bottom half of the list.

 In the iterative version of Binary Search, you split the
list into half after each iteration. If the element is less
than the middle, then you search for the lower half of
the list in the next iteration, otherwise you search for
the upper half of the list.

 There is another way to similarly solve Binary Search.

7

Recursive Algorithm for
Binary Search

def binarySearch(key, low, high, numlist):
 mid = (low + high)//2
 if low > high:
 return -1
 if key == numlist[mid]:
 return mid
 elif key < numlist[mid]:
 return binarySearch(key, low, mid-1, numlist)
 else:
 return binarySearch(key, mid+1, high, numlist)

8

Recursive Definitions
 A description of something that refers to itself is called a

recursive definition.

 In the last example, the binary search algorithm uses its own
description – a “call” to binary search “recurs” inside of the
definition – hence the label “recursive definition.”

 The function is calling itself with new parameters. If you
notice, the parameters low and high change in every
recursive call.

 The parameters are local to the particular instantiation of the
function body.

9

Recursive Definitions Rules
 All good recursive definitions have these two key

characteristics:
 There are one or more base cases for which no

recursion is applied.
 All chains of recursion eventually end up at one of the

base cases.

 The simplest way for these two conditions to occur is
for each recursion to act on a smaller version of the
original problem. A very small version of the original
problem that can be solved without recursion
becomes the base case.

Recursive Definitions: Math
Example

 In mathematics, recursion is frequently used. The most
common example is the factorial:

 For example, 5! = 5(4)(3)(2)(1), or
5! = 5(4!)

10

! (1)(2)...(1)n n n n= − −

11

Factorial Recursive Definition
 In other words,

 Or

 This definition says that 0! is 1, while the factorial of
any other number is that number times the factorial of
one less than that number.

! (1)!n n n= −

1 if 0
!

(1)! otherwise
n

n
n n

=
=  −

12

Factorial Recursive Definition
 Our definition is recursive, but definitely not circular.

 Circular definition will keep on going indefinitely. Recursive
definitions on the other hand stops at one point of its
execution

 Consider 4!
 4! = 4(4-1)! = 4(3!)
 What is 3!? We apply the definition again

4! = 4(3!) = 4[3(3-1)!] = 4(3)(2!)
 And so on…

4! = 4(3!) = 4(3)(2!) = 4(3)(2)(1!) = 4(3)(2)(1)(0!) = 4(3)(2)(1)(1) =
24

13

Factorial Recursive Definition
 Factorial is not circular because we eventually get to 0!,

whose definition does not rely on the definition of
factorial and is just 1. This is called a base case for the
recursion.

 When the base case is encountered, we get a closed
expression that is computed directly.

14

Recursive Algorithm for
Factorial

 We’ve seen previously that factorial can be calculated
using a loop accumulator.

 Factorial can be written recursively as:

def factorial(n):
 if n == 0:
 return 1
 else:
 return n * factorial(n-1)

15

Factorial: Calling recursive
function

>>> factorial(4)

24

>>> factorial(10)

3628800

Remember:
each call to a function starts that function anew, with
its own copies of local variables and parameters.

16

Example: String Reversal
 Python lists have a built-in method that can be used to

reverse the list. What if you wanted to reverse a string?

 If you wanted to program this yourself, one way to do it
would be to convert the string into a list of characters,
reverse the list, and then convert it back into a string.

17

Example: String Reversal
 Using recursion, we can calculate the reverse of a

string without the intermediate list step.

 Think of a string as a recursive object:
 Divide it up into a first character and “all the rest”
 Reverse the “rest” and append the first character to the

end of it

18

Example: String Reversal
 def reverse(s):

 return reverse(s[1:]) + s[0]

 The slice s[1:] returns all but the first character of the
string.

 We reverse this slice and then concatenate the first
character (s[0]) onto the end.

19

Example: String Reversal
 >>> reverse("Hello")

Traceback (most recent call last):
 File "<pyshell#6>", line 1, in -toplevel-
 reverse("Hello")
 File "C:/Program Files/Python 2.3.3/z.py", line 8, in
reverse
 return reverse(s[1:]) + s[0]
 File "C:/Program Files/Python 2.3.3/z.py", line 8, in
reverse
 return reverse(s[1:]) + s[0]
…
 File "C:/Program Files/Python 2.3.3/z.py", line 8, in
reverse
 return reverse(s[1:]) + s[0]
RuntimeError: maximum recursion depth exceeded

 What happened? There were 1000 lines of errors!

20

Example: String Reversal
 Remember: To build a correct recursive function, we

need a base case that doesn’t use recursion.

 We forgot to include a base case, so our program is an
infinite recursion. Each call to reverse contains
another call to reverse, so none of them return.

21

Example: String Reversal
 Each time a function is called it takes some

memory. Python stops it at 1000 calls, the
default “maximum recursion depth.”

 What should we use for our base case?

 Following our algorithm, we know we will
eventually try to reverse the empty string. Since
the empty string is its own reverse, we can use
it as the base case.

22

Example: String Reversal
 def reverse(s):

 if s == "":
 return s
 else:
 return reverse(s[1:]) + s[0]

 >>> reverse("Hello")
'olleH'

23

Example: Anagrams
 An anagram is formed by rearranging the letters of a

word.

 Anagram formation is a special case of generating all
permutations (rearrangements) of a sequence, a
problem that is seen frequently in mathematics and
computer science.

24

Example: Anagrams
 Let’s apply the same approach from the previous

example.
 Slice the first character off the string.
 Place the first character in all possible locations within the

anagrams formed from the “rest” of the original string.

25

Example: Anagrams
 Suppose the original string is “abc”. Stripping

off the “a” leaves us with “bc”.

 Generating all anagrams of “bc” gives us “bc”
and “cb”.

 To form the anagram of the original string, we
place “a” in all possible locations within these
two smaller anagrams: [“abc”, “bac”, “bca”,
“acb”, “cab”, “cba”]

26

Example: Anagrams
 As in the previous example, we can use the empty

string as our base case.

 def anagrams(s):
 if s == "":
 return [s]
 else:
 ans = []
 for w in anagrams(s[1:]):
 for pos in range(len(w)+1):
 ans.append(w[:pos]+s[0]+w[pos:])
 return ans

27

Example: Anagrams
 A list is used to accumulate results.
 The outer for loop iterates through each

anagram of the tail of s.

 The inner loop goes through each position in
the anagram and creates a new string with the
original first character inserted into that
position.

 The inner loop goes up to len(w)+1 so the
new character can be added at the end of the
anagram.

28

Example: Anagrams
 w[:pos]+s[0]+w[pos:]
 w[:pos] gives the part of w up to, but not including,

pos.
 w[pos:] gives everything from pos to the end.
 Inserting s[0] between them effectively inserts it into w

at pos.

29

Example: Anagrams
 The number of anagrams of a word is the factorial of

the length of the word.

 >>> anagrams("abc")
['abc', 'bac', 'bca', 'acb', 'cab', 'cba']

Example: Ackermann
Function

𝐴(0, 𝑗) = 𝑗 + 1 for 𝑗 ≥ 0
𝐴(𝑖, 0) = 𝐴(𝑖 − 1, 1) for 𝑖 > 0
𝐴(𝑖, 𝑗) = 𝐴(𝑖 − 1, 𝐴(𝑖, 𝑗 − 1)) otherwise

Function grows extremely fast; 𝐴(𝑘, 𝑘) grows faster than iterated
exponentiation:

𝐸(0) = 2
𝐸 𝑛 + 1 = 2𝐸 𝑛

𝐸 1 = 4
𝐸 2 = 16
𝐸 3 = 64𝐾
𝐸 4 = 264𝐾
…

McCarthy’s 99 Function
𝑀 𝑛 = 𝑛 − 10 𝑖𝑖 𝑛 > 100
𝑀 𝑛 = 𝑀(𝑀 𝑛 + 11) 𝑖𝑖 𝑛 ≤ 100

Not obvious that the computation terminates…

	Announcements
	Recursion
	Key Insight
	CQ:
	Recall Binary Search
	Recursive Problem-Solving
	Recursive Algorithm for Binary Search
	Recursive Definitions
	Recursive Definitions Rules
	Recursive Definitions: Math Example
	Factorial Recursive Definition
	Factorial Recursive Definition
	Factorial Recursive Definition
	Recursive Algorithm for Factorial
	Factorial: Calling recursive function
	Example: String Reversal
	Example: String Reversal
	Example: String Reversal
	Example: String Reversal
	Example: String Reversal
	Example: String Reversal
	Example: String Reversal
	Example: Anagrams
	Example: Anagrams
	Example: Anagrams
	Example: Anagrams
	Example: Anagrams
	Example: Anagrams
	Example: Anagrams
	Example: Ackermann Function
	McCarthy’s 99 Function

