
Announcements
 Project 5 is due Dec. 6.

 Second part is essay questions for CoS teaming
requirements.
 The first part you do as a team
 The CoS essay gets individually answered and has

separate submission instructions on the home page

 Final on Dec 11 in EE 129, 10:30 – 12:30
 Also posted on course home

Recursion
 Divide & Conquer

 Merge sort
 Binary search

 Permutations generated recursively
 Using strings (Anagrams)
 Using lists (making type distinctions

 Tail recursion
 Unrolling recursive string reversal
 Unrolling recursive binary search

 Recursive tree traversals
 Special case priority queue (heap)
 Special case expression tree
 General tree traversal

2

3

Key Insight
 To understand and be able to program

recursively, you must
 Break down the problem into sub problems and
 Join the solution of those sub problems back to

get the solution of the original problem.

 Merge sort is a good example

Visual Representation
(see week 13)

log(n)
n elements
merged

5

Recall Binary Search
 The basic idea of the binary search algorithm was to

iteratively divide the problem in half.

 This technique is known as the divide and conquer
approach in algorithm design

 Divide and conquer divides the original problem into
sub-problems that are smaller versions of the original
problem.

6

Recursive Algorithm for
Binary Search

def binarySearch(key, low, high, numlist):
 mid = (low + high)//2
 if low > high:
 return -1
 if key == numlist[mid]:
 return mid
 elif key < numlist[mid]:
 return binarySearch(key, low, mid-1, numlist)
 else:
 return binarySearch(key, mid+1, high, numlist)

7

Recursive Definitions Rules
1. All good recursive definitions have these two key

characteristics:
 There are one or more base cases for which no recursion is

applied:
 Empty search interval for binary search
 Length 1 lists for merge sort

 All chains of recursion eventually end up at one of the base
cases.
 After probing the mid entry of the search segment, recursion reduces

the search interval by half, an ideal case
 Merge sort splits the list into two halves, each smaller than the input

2. The simplest way for these two conditions to occur is for each
recursion to act on a smaller version of the original problem. A
very small version of the original problem that can be solved
without recursion becomes the base case.
 See (1)

Example of Call Sequence
Search 7 in L=[1,3,4,5,6,8,9]:

 (7,0,6,L): call
 0 <= 6 bnds chk
 (0+6)//2 => 3 mid
 7 != 5 key comp
 (7,4,6,L): recursion
 4 <= 6 bnds chk
 (4+6)//2 => 5 mid
 7 != 8 key comp
 (7,4,4,L): …
 4 <= 4

Continued…
 (4+4)//2 => 4
 7 != 6
 (7,5,4,L):
 5 > 4
 return -1

 return -1
 return -1

 return -1

 function has returned

9

Example: Permutations
 All possible orderings of numbers 1 through 𝑛 encode

the permutations of 𝑛 objects.

 Let’s generate all permutations recursively.
 Caution: there are 𝑛! permutations of 𝑛 objects

1,2,3,4 2,1,3,4 2,3,1,4 2,3,4,1
1,3,2,4 3,1,2,4 3,2,1,4 3,2,4,1
1,3,4,2 3,1,4,2 3,4,1,2 3,4,2,1
1,2,4,3 2,1,4,3 2,4,1,3 2,4,3,1
1,4,2,3 4,1,2,3 4,2,1,3 4,2,3,1
1,4,3,2 4,1,3,2 4,3,1,2 4,3,2,1

10

Example: Permutations
 All possible orderings of numbers 1 through 𝑛 encode

the permutations of 𝑛 objects.

 Let’s generate all permutations recursively.
 Caution: there are 𝑛! permutations of 𝑛 objects

1,2,3,4 2,1,3,4 2,3,1,4 2,3,4,1
1,3,2,4 3,1,2,4 3,2,1,4 3,2,4,1
1,3,4,2 3,1,4,2 3,4,1,2 3,4,2,1
1,2,4,3 2,1,4,3 2,4,1,3 2,4,3,1
1,4,2,3 4,1,2,3 4,2,1,3 4,2,3,1
1,4,3,2 4,1,3,2 4,3,1,2 4,3,2,1

CQ
There are X permutations of 4 objects, where X is:

A. About 12

B. 24

C. 36

D. 60

12

Example: Permutations
 Let’s apply this approach
 Slice the first character off the string.
 Place the first character in all possible locations within the

permutations formed from the “rest” of the original string.

13

Permuting Characters
 Suppose the original string is “123”. Stripping

off the “1” leaves us with “23”.

 Generating all permutations of “23” gives us
“23” and “32”.

 To form the permutations of the original string,
we place “1” in all possible locations within
these two permutations:
[“123”, “213”, “231”, “132”, “312”, “321”]

14

Example: Permutations
 As in the previous example, we can use the empty

string as our base case.

 def permute(s):
 if s == "":
 return [s]
 else:
 ans = []
 for w in permute(s[1:]):
 for pos in range(len(w)+1):
 ans.append(w[:pos]+s[0]+w[pos:])
 return ans

15

Example: Permutations
 A list is used to accumulate results.
 The outer for loop iterates through each

permutation of the tail of s.

 The inner loop goes through each position in
the permutation and creates a new string with
the original first character inserted into that
position.

 The inner loop goes up to len(w)+1 so the
new character can be added also at the end of
the tail permutation.

16

Example: Permutations
 w[:pos]+s[0]+w[pos:]
 w[:pos] gives the part of w up to, but not including,

pos.
 w[pos:] gives everything from pos to the end.
 Inserting s[0] between them effectively inserts it into w

at pos.

Now do it with list argument
instead of strings

 def permute(s):
 if s == []: # was “”
 return s # was [s]
 else:
 ans = []
 for w in permute(s[1:]):
 for pos in range(len(w)+1):
 ans.append(w[:pos]+s[0]+w[pos:])
 return ans

Demo Code

19

Recursive String Reversal
 Using recursion, we can calculate the reverse of a

string without the intermediate list step.

 Think of a string as a recursive object:
 Divide it up into a first character and “all the rest”
 Reverse the “rest” and append the first character to the

end of it

 Elegant, but don’t forget the base case!

20

String Reversal?
 def reverse(s):

 return reverse(s[1:]) + s[0]

 The slice s[1:] returns all but the first character of the
string.

 We reverse this slice and then concatenate the first
character (s[0]) onto the end.

21

String Reversal?
 >>> reverse("Hello")

Traceback (most recent call last):
 File "<pyshell#6>", line 1, in -toplevel-
 reverse("Hello")
 File "C:/Program Files/Python 2.3.3/z.py", line 8, in
reverse
 return reverse(s[1:]) + s[0]
 File "C:/Program Files/Python 2.3.3/z.py", line 8, in
reverse
 return reverse(s[1:]) + s[0]
…
 File "C:/Program Files/Python 2.3.3/z.py", line 8, in
reverse
 return reverse(s[1:]) + s[0]
RuntimeError: maximum recursion depth exceeded

 What happened? There were 1000 lines of errors!

22

Example: String Reversal
 Remember: To build a correct recursive function, we

need a base case that doesn’t use recursion.

 We forgot to include a base case, so our program is an
infinite recursion. Each call to reverse contains
another call to reverse, so none of them return.

23

Example: String Reversal
 def reverse(s):

 if s == "":
 return s
 else:
 return reverse(s[1:]) + s[0]

 >>> reverse("Hello")
'olleH'

Announcements
 Posted slides updated

 Project 5 is due Dec. 6.

 Second part is essay questions for CoS teaming
requirements.
 The first part you do as a team
 The CoS essay gets individually answered and has

separate submission instructions on the home page

 Final on Dec 11 in EE 129, 10:30 – 12:30
 Also posted on course home

Tail Recursion
 Characteristic code pattern:

def f(X):
 <base case condition & computation>
 <some computation> #f(X’) at the end
 return result

 Can be changed into a loop:
def f(X):
 <base case computation>
 while not <base case condition>:
 <some computation> #X’, inverted
 return result

Tail Recursion
 Characteristic code pattern:

def revStringRec(L):
 if len(L) == 0:
 return L
 R = revStringRec(L[1:]) + L[0]
 return R

 Can be changed into a loop

def revStringLoop(L):
 R = ''
 while len(L) != 0:
 R = L[0] + R
 L = L[1:]
 return R

Example
rev(‘abc’): ‘cba’ ‘abc’; ‘’

 ‘a’; rev(‘bc’) ‘cb’+’a’ ‘a’; ‘bc’; ‘a’+’’

 ‘b’; rev(‘c’) ‘c’+’b’ ‘b’; ‘c’; ‘b’+’a’

 ‘c’; rev(‘’) ‘’+’c’ ‘c’; ‘’; ‘c’+’ba’

 ‘’ ‘cba’

Inverse also true
 An algorithm with a main loop can also be recast

recursively, using tail recursion

 Unroll the loop and look for the pattern

Tail Recursion
Loop can be changed into a recursion:

def revStringLoop(L):
 R = ''
 while len(L) != 0:
 R = L[0] + R
 L = L[1:]
 return R

Outcome:

def revStringRec(L):
 if len(L) == 0:
 return L
 R = revStringRec(L[1:]) + L[0]
 return R

30

Another Conversion Example
def binarySearch(key, low, high, numlist):
 mid = (low + high)//2
 if low > high:
 return -1
 if key == numlist[mid]:
 return mid
 elif key < numlist[mid]:
 return binarySearch(key, low, mid-1, numlist)
 else:
 return binarySearch(key, mid+1, high, numlist)

31

Another convertible example
def binarySearch(key, low, high, numlist):
 mid = (low + high)//2
 while low <= high:
 if key == numlist[mid]:
 return mid
 elif key < numlist[mid]:
 high = mid-1
 else:
 low = mid+1

 return -1

Heap Traversals
 We discussed heaps (priority queues) in week 13

 Data structure is conceptually a complete binary tree

 Encoded as a flat list, filling the tree layer by layer

 Index mappings for parent → child and child → parent

 Parent not smaller than children (max heap)

Access Mappings:
 Parent to left child: 𝑘 −> 2𝑘 + 1
 Parent to right child: 𝑘 −> 2𝑘 + 2
 Child to parent: 𝑘 −> (𝑘 − 1)//2

x

y z

≥ ≥

CQ: encoding of a valid heap?
[9,7,4,6,5,2,2,1,1,1,1]

A. Yes

B. No

CQ: encoding of a valid heap?
[9,7,4,6,5,2,2,1,1,1,1]

A. Yes

B. No

9

7 4

5 6 2 2

1 1 1 1

CQ: encoding of a valid heap?
[9,7,4,6,5,5,2,2,1,1,1]

A. Yes

B. No

CQ: encoding of a valid heap?
[9,7,4,6,5,5,2,2,1,1,1]

A. Yes

B. No

9

7 4

5 6 5 2

2 1 1 1

CQ: how many children for
L[5]?

[9,7,4,6,5,4,2,2,1,1,1,1]

A. 0

B. 1

C. 2

CQ: how many children for
L[5]?

[9,7,4,6,5,4,2,2,1,1,1,1]

A. 0

B. 1

C. 2

9

7 4

5 6 4 2

2 1 1 1 1

Special Traversal
root to leaf, always leftmost:

k = 0
while k < len(L):
 # work on node L[k]
 k = 2*k+1

last leaf to root:

k = len(L)-1
while k >= 0:
 # process node L[k]
 k = (k-1)//2

Expression Tree Traversals
 Preorder:
 visit node, visit left subtree, visit right subtree

 Inorder:
 visit left subtree, visit node, visit right subtree

 Postorder:
 visit left subtree, visit right subtree, visit node

+,*,3,5,*,2,-,6,1

3,*,5,+,2,*,6,-,1

3,5,*,2,6,1,-,*,+

41

+

∗ ∗

− 3 5 2

6 1

3*5+2*(6-1)

Pre-, In- & Postorder
def preorder(E):
 print root label
 if E is not a leaf:
 preorder(left(E))
 preorder(right(E))

def inorder(E):
 if E is not a leaf:
 inorder(left(E))
 print root label
 if E is not a leaf:
 inorder(right(E))

def postorder(E):
 if E is not a leaf:
 preorder(left(E))
 preorder(right(E))
 print root label

Tree Encoding
 [r, b1, …, bk] encodes the node r and its descendants

 Nesting builds up the tree

 It is a preorder encoding !!!

43

r

b1 bk b2

Summing all Node Values
 Assume given a list all of whose elements are numbers or sublists

of numbers, nested arbitrarily

 This list encodes a tree all of whose nodes, including leaves, are
labeled with a number

 We want to sum all numbers in the tree

44

3

1 9

2 5 4 7

5 2 3 1

[3,[1,4,[2,3,1],5],[9,[7,2,5]]]

no distinction between node
and subtree…!

def sumTree(L):
 if type(L) == int or type(L) == float:
 return L
 if type(L) != list:
 print("unknown tree node",L)
 return
 sum = 0
 for L1 in L:
 sum = sum + sumTree(L1)
 return sum

45

Pre-, In- or Postorder?
def sumTree(L):
 if type(L) == int or type(L) == float:
 return L
 if type(L) != list:
 print("unknown tree node",L)
 return
 sum = L[0]
 for L1 in L[1:]:
 sum = sum + sumTree(L1)
 return sum

46

	Announcements
	Recursion
	Key Insight
	Visual Representation �(see week 13)
	Recall Binary Search
	Recursive Algorithm for Binary Search
	Recursive Definitions Rules
	Example of Call Sequence
	Example: Permutations
	Example: Permutations
	CQ
	Example: Permutations
	Permuting Characters
	Example: Permutations
	Example: Permutations
	Example: Permutations
	Now do it with list argument instead of strings
	Demo Code
	Recursive String Reversal
	String Reversal?
	String Reversal?
	Example: String Reversal
	Example: String Reversal
	Announcements
	Tail Recursion
	Tail Recursion
	Example
	Inverse also true
	Tail Recursion
	Another Conversion Example
	Another convertible example
	Heap Traversals
	CQ: encoding of a valid heap?
	CQ: encoding of a valid heap?
	CQ: encoding of a valid heap?
	CQ: encoding of a valid heap?
	CQ: how many children for L[5]?
	CQ: how many children for L[5]?
	Special Traversal
	Expression Tree Traversals
	Slide Number 41
	Pre-, In- & Postorder
	Tree Encoding
	Summing all Node Values
	no distinction between node and subtree…!
	Pre-, In- or Postorder?

