
Announcements
 Course evaluation

 Your opinion matters!

 Project 5 due Thu

 Remember second part to be done individually with separate
submission. Details on course home.

 Attendance grades

 Will be posted prior to the final

 Final on Dec 11 in EE 129, 10:30 – 12:30

 Also posted on course home

Fun things to do with Python
 Build video games

 http://pygame.org/news.html

 http://rene.f0o.com/mywiki/PythonGameProgramming

http://pygame.org/news.html
http://pygame.org/news.html
http://rene.f0o.com/mywiki/PythonGameProgramming
http://rene.f0o.com/mywiki/PythonGameProgramming

Lego Mindstorms
 Program your robots with Python

 http://code.google.com/p/nxt-python/

http://code.google.com/p/nxt-python/
http://code.google.com/p/nxt-python/
http://code.google.com/p/nxt-python/
http://code.google.com/p/nxt-python/

Professional Python Use
 Bio Informatics

 http://shop.oreilly.com/product/9780596154516.do

 Numpy / Scipy

 http://numpy.scipy.org/

http://shop.oreilly.com/product/9780596154516.do
http://shop.oreilly.com/product/9780596154516.do

Final
 Around 40 Questions

 Multiple Choice

 Same format as midterms

 Material includes last week’s

How to Prepare
 Material from text books: Chapters 3 – 6, 8 – 12.

Chapter 7 material limited.

 Recursion, tree encodings

 Complexity (i.e., 𝑂(𝑛2) etc.)

 Algorithms, including binary search, priority queue
insertion/deletion, heap sort, merge sort, insertion sort,
permutations, anagrams.

How to Prepare
 Past and current midterms

 Past finals

 Read through solutions to projects

 Is there code you do not understand?

 Read through lab solutions

 Is there code you do not understand?

 Review the slides

What is the complexity?

A: O(n)
B: O(n2)
C: O(1)

D: O(log n)

def myFun(myList):

 n = len(myList)

 i = 1

 while (i<n):

 myList[i] = i

 i = i*2

 return myList

What is the complexity?

def trickyReturns(list):

 k = 0

 for w in range(len(list)):

 if(list[w] == 1001):

 return w

 else:

 k=k+1

 return k A: O(n)
B: O(n2)
C: O(1)

D: O(log n)

What does this code do?

def mystery(x):

 if x == 1:

 return 1

 else:

 return x * mystery(x-1)

What does this do?

def mystery(x):

 return x + mystery(x-1)

Tracing the mystery function
 mystery(5)

 5 + (mystery(4))

 5 + (4 + (mystery(3)))

 5 + (4 + (3 + (mystery(2))))

 ….

 Why are the parentheses important?

What if we had this function?

def mystery(x):

 if x == 0:

 return 0

 else:

 return x - mystery(x-1)

Tracing the mystery function
 mystery(5)

 5 - (mystery(4))

 5 - (4 - (mystery(3)))

 5 - (4 - (3 - (mystery(2))))

 ….

>>> mystery(3)

2

>>> mystery(4)

2

>>> mystery(5)

3

>>>

Identify the term that has the
largest growth rate

 Num of steps growth term complexity

 6n + 3 6n O(n)

 2n2 + 6n + 3 2n2 O(n2)

 2n3 + 6n + 3 2n3 O(n3)

 2n10 + 2n + 3 2n O(2n)

 n! + 2n10 + 2n + 3 n! O(n!)

Comparison of complexities:
fastest to slowest

 O(1) – constant time

 O(log n) – logarithmic time

 O(n) – linear time

 O(n log n) – log linear time

 O(n2) – quadratic time

 O(2n) – exponential time

 O(n!) – factorial time

What is the terminating condition /
base case?

def mystery(x):

 if x == 1:

 return 1

 else:

 return x * mystery(x-1)

What if we call mystery with a
negative number?

Now what is the terminating
condition / base case?

def mystery(x):

 if x <=1:

 return 1

 else:

 return x * mystery(x-1)

What if we call mystery with a
negative number?

What is the output of the following
code?

list = ['A',1,'B',2,'C',3,'D',4]

myDict = {}

for i in range(0,len(list),2):

 myDict[list[i]] = list[i+1]

Past CQ’s

CQ
There are X permutations of 4 objects, where X is:

A. About 12

B. 24

C. 36

D. 60

CQ:
Merge sort can be done using recursion

A. True

B. False

C. Depends

CQ: For large n, which is faster?
A. Running time for input size n is 1020𝑛

B. Running time for input size n is 10−20 𝑛2

CQ: For large n, which is faster?
A. 1020𝑛 (seconds)

B. 10−20 𝑛2 (seconds)

A is better when n > 1020

Clicker Question
 What is the complexity of hiding the image in project 3, where

the image is 𝑛 × 𝑛 pixels?

A. 𝑂 1

B. 𝑂 𝑛

C. 𝑂 𝑛2

D. 𝑂(𝑛3)

CQ:
What is the last character of the string returned by read()

A. ‘\n’

B. The last character in the last line of the file

C. Depends

CQ: How do we select ‘Leaf4’
from the Tree?

Tree = [‘Root’, [‘Node1’, ‘Leaf0’, ‘Leaf1’],

 ‘Leaf2’,

 [‘Node2’, ‘Leaf3’, ‘Leaf4’, [‘Node3’, ‘Leaf5’, ‘Leaf6’]]]

A: Tree[4][3]

B: Tree[3][2]

C: Tree[8]

CQ: How many?
What does the following program print?

S = "a,b,,d,e"
print(len(S.split(",")))

A. 8

B. 5

C. 4

28

CQ: which mapping?

 𝐴 =
0 1 2
5 4 3

 stored as list A = [0,1,2,5,4,3],

 indexed zero-up: A[1][1] = 4

def get_Elt_1(i, k, A):

 p = i*3 + k

 return A[p]

def get_Elt_3(i, k, A):

 p = i*3 + k - 1

 return A[p]

def get_Elt_2(i, k, A):

 p = k*3 + i

 return A[p]

A) get_Elt_1

B) get_Elt_2

C) get_Elt_3

Announcements
 CoS survey on team experience needed. Link on course home:

 Go to the section “Science Gains survey”

 Course evaluation
 Your opinion matters!

 Project 5 due Thu
 Remember second part to be done individually with separate submission.

Details on course home.

 Attendance grades
 Will be posted prior to the final

 Final on Dec 11 in EE 129, 10:30 – 12:30
 Also posted on course home

CQ: What is S[:] ?
A. S

B. S[0:0]

C. S[0:len(S)]

CQ:Are these programs equivalent?

b =
[‘h’,’e’,’l’,’l
’,’o’]
def myFun(l):
 l.append(6)
 return l
print(myFun(b))

b =
[‘h’,’e’,’l’,’l’,’
o’]
def myFun(l):
 l +[6]
 return l
print(myFun(b))

2 1

A: yes

B: no

CQ:Are these programs equivalent?

b =
[‘h’,’e’,’l’,’l
’,’o’]
def myFun(l):
 l.append([6])
 return l
print(myFun(b))

b =
[‘h’,’e’,’l’,’l’,’
o’]
def myFun(l):
 l +[6]
 return l
print(myFun(b))

2 1

A: yes

B: no

CQ: Are these programs
equivalent?

b =
[‘h’,’e’,’l’,’l
’,’o’]
b.insert(len(b), “w”)
print(b)

b =
[‘h’,’e’,’l’,’l’,’
o’]
b.append(“w”)
print(b)

2 1

A: yes

B: no

Clicker Question: Are these two
functions equivalent?

def printByCharacter(str)
 i = 0
 while i < len(str):
 print (str[i])
 i = i + 1

def printByCharacter(str)
 i = 0
 while i < 16:
 print (str[i])
 i = i + 1

A: yes

B: no

CQ: Are these programs
equivalent?

i = 0
x = “This is a string”
while i < len(x):
 print (x[i])
 i = i + 1

x = “This is a string”
for y in x:
 print (y)

A: yes

B: no

CQ: Are these programs
equivalent?

i = 0
x = “This is a string”
while i < len(x):
 print (x[i])
 i = i + 1

A: yes

B: no

x = “This is a string”
i = 0 – len(x)
while i < 0:
 print (x[i])
 i = i + 1

CQ: Are these programs
equivalent?

1.capitalize() “1”.capitalize()

2 1

A: yes

B: no

CQ:Are these programs equivalent?

for a in range(0, 10, 1):
 print(a)

for a in range(10):
 print(a)

2 1

A: yes

B: no

CQ: Do these programs print the
same text?

A: Yes

B: No

x = 0
y = 0

for k in range(5):
 x = x + k
 y = x + k
print (y)

x = 0
y = 0

for k in range(5):
 x = x + k
y = x + k
print (y)

1 2

CQ: Do these functions have the
same output?

def nested1(a,b):
 for x in range(0, a):
 for y in range (0, b):
 print(x*y)

def nested2(a,b):
 for y in range(0,b):
 for x in range (0, a):
 print(x*y)

A: yes

B: no

CQ:Are these programs equivalent?

a = 0
while(a < 10):
 print(a)
 a = a+1

for a in range(10):
 print(a)

2 1

A: yes

B: no

CQ
 Is this list empty?

[[]]

A: This list is empty

B: This list is not empty

Clicker Question
 1

if “False”:
 print(“hi”)

 2

if False:
 print(“hi”)

A: 1 and 2 both print

B: only 1 prints

C: only 2 prints

D: neither 1 nor 2 print

Clicker Question
 3

if eval(“False”):
 print(“hi”)

 2

if False:
 print(“hi”)

A: 3 and 2 both print

B: only 3 prints

C: only 2 prints

D: neither 3 nor 2 print

CQ: Do these programs print the
same thing?

2 1

A: yes

B: no

x = 12
if x > 10:
 print (x)
x = x + 1
print (x)

x = 12
if x > 10:
 print(x)
else:
 x = x + 1
print(x)

Clicker Question
 Now we can start building useful conditions

 Does this print if x > 0?

if x and y > 0:
 print(x , y)

A: yes

B: no

Clicker Question:
Are these programs equivalent?

if (x+y) < 10:
 print(x)
if (x+y)>=10:
 print(y)

if(x+y) < 10:
 print(x)
else:
 print(y)

2 1

A: yes

B: no

CQ: Do these programs print the
same thing?

2 1

A: yes

B: no

x = 7
if x > 10:
 print (x)
x = x + 1
print (x)

x = 7
if x > 10:
 print (x)
else:
 x = x + 1
print (x)

CQ: Are these programs
equivalent?

printCountNTimes(8) printCountNTimes(4)
printCountNTimes(4)

2 1

A: yes B: no

def printCountNTimes(n):
 count = 0
 while (count < n):
 print ('The count is: ', count)
 count = count + 1

CQ: Are these programs
equivalent?

2 1

A: yes

B: no

x = 7
if x > 10:
 print x
x = x + 1
print x

x = 7
if x > 10:
 print x
else:
 x = x + 1
print x

CQ: Precedence
 Consider the expression 𝑎 ∗ 𝑏 + 𝑐 ∗ 𝑑; which of the three is it

equal to?

A. (𝑎 ∗ 𝑏) + (𝑐 ∗ 𝑑)

B. 𝑎 ∗ (𝑏 + 𝑐) ∗ 𝑑

C. ((𝑎 ∗ 𝑏) + 𝑐) ∗ 𝑑

CQ: Is x global or local?

x = 3
def myFun():
 y = 4
 z = x + y
myFun()

A: global

B: local

CQ: does this program print
3 or 4?

x = 3
def myFun():
 print (x)
x = 4
myFun()

A: 3

B: 4

CQ: Do these programs print the

same text?

a = 3
def myFun(a):
 print (a)
myFun(4)

a = 3
print (a)

2 1

A: yes

B: no

CQ: Do these programs print the

same text?

a = 3
def myFun(b):
 print(b)
print(a)
myFun(3)

a = 3
def myFun(b):
 print(b)
 print(b)
myFun(3)

2 1

A: yes B: no

CQ: Do these programs print the
same text?

a = 3
def myFun(a):
 print(a)
print(a)

a = 3
def myFun(a):
 print(a)
 print(a)

2 1

A: yes

B: no

CQ: Do these programs print the

same text?

def myFun(a):
 print(a)
 return a
print(myFun(4))

def myFun(a):
 print(a)
print (myFun(4))

2 1

A: yes

B: no

Clicker Question
• Which variable name is not valid?

A. a

B. seven

C. 4a

D. _4

CQ: Do these programs print the
same text?

print(Hello) print(“Hello”)

2 1

A: yes

C: maybe

B: no

Note on Heaps
 Heap = priority queue

 data structure a full binary tree except possibly the last level which must be
filled in left-to-right

 Mapping functions allow encoding heap as a list

 If you take out the first list element, the mapping functions get messed up.
Therefor, “plug the hole”

 Insertion works from tree bottom up

 Making a heap by 𝑛 insertions into an empty hea[is 𝑂(𝑛 log 𝑛)

 Single insertion or deletion is 𝑂(log 𝑛), 𝑛 the heap size

 See week 13…

