
���� ����

GGLLMMAAPP11(()) UUNNIIXX SSyysstteemm VV GGLLMMAAPP11(())

NNAAMMEE
glMap1d, glMap1f − define a one-dimensional evaluator

CC SSPPEECCIIFFIICCAATTIIOONN
void glMap1d(GLenum target,

GLdouble u1,
GLdouble u2,
GLint stride,
GLint order,
const GLdouble *points)

void glMap1f(GLenum target,
GLfloat u1,
GLfloat u2,
GLint stride,
GLint order,
const GLfloat *points)

delim $$

PPAARRAAMMEETTEERRSS
target Specifies the kind of values that are generated by the evaluator. Symbolic constants

GL_MAP1_VERTEX_3, GL_MAP1_VERTEX_4, GL_MAP1_INDEX,
GL_MAP1_COLOR_4, GL_MAP1_NORMAL, GL_MAP1_TEXTURE_COORD_1,
GL_MAP1_TEXTURE_COORD_2, GL_MAP1_TEXTURE_COORD_3, and
GL_MAP1_TEXTURE_COORD_4 are accepted.

u1, u2 Specify a linear mapping of u, as presented to glEvalCoord1, to $u hat$, the variable that is
evaluated by the equations specified by this command.

stride Specifies the number of floats or doubles between the beginning of one control point and the begin-
ning of the next one in the data structure referenced in points. This allows control points to be
embedded in arbitrary data structures. The only constraint is that the values for a particular control
point must occupy contiguous memory locations.

order Specifies the number of control points. Must be positive.

points Specifies a pointer to the array of control points.

DDEESSCCRRIIPPTTIIOONN
Evaluators provide a way to use polynomial or rational polynomial mapping to produce vertices, normals,
texture coordinates, and colors. The values produced by an evaluator are sent to further stages of GL pro-
cessing just as if they had been presented using glVertex, glNormal, glTexCoord, and glColor com-
mands, except that the generated values do not update the current normal, texture coordinates, or color.

All polynomial or rational polynomial splines of any degree (up to the maximum degree supported by the
GL implementation) can be described using evaluators. These include almost all splines used in computer
graphics: B-splines, Bezier curves, Hermite splines, and so on.

Evaluators define curves based on Bernstein polynomials. Define $p (u hat ˆ) $ as

$p (u hat ˆ) ˜˜=˜˜ up 10 { sum from i=0 to n } B sub i sup n (u hat ˆ) R sub i$

where $R sub i$ is a control point and $B sub i sup n (u hat ˆ)$ is the ith Bernstein polynomial of degree
n (order = $n + 1$):

$B sub i sup n (u hat ˆ) ˜˜=˜˜ left (down 20 {cpile { n above i }} ˜˜ right) u hat sup i (1 - u hat ˆ) sup { n - i }$

Page 1 July 22, 1997

���� ����

GGLLMMAAPP11(()) UUNNIIXX SSyysstteemm VV GGLLMMAAPP11(())

Recall that

$0 sup 0 ˜==˜ 1 $ and $ left (down 20 {cpile { n above ˜0 }} ˜˜ right) ˜˜==˜˜ 1 $

glMap1 is used to define the basis and to specify what kind of values are produced. Once defined, a map
can be enabled and disabled by calling glEnable and glDisable with the map name, one of the nine
predefined values for target described below. glEvalCoord1 evaluates the one-dimensional maps that are
enabled. When
glEvalCoord1 presents a value u, the Bernstein functions are evaluated using $u hat$, where

$u hat ˜˜=˜˜ {u ˜-˜ "u1"} over {"u2" ˜-˜ "u1"}$

target is a symbolic constant that indicates what kind of control points are provided in points, and what out-
put is generated when the map is evaluated. It can assume one of nine predefined values:

GL_MAP1_VERTEX_3 Each control point is three floating-point values representing x, y, and
z. Internal glVertex3 commands are generated when the map is
evaluated.

GL_MAP1_VERTEX_4 Each control point is four floating-point values representing x, y, z,
and w. Internal glVertex4 commands are generated when the map is
evaluated.

GL_MAP1_INDEX Each control point is a single floating-point value representing a color
index. Internal glIndex commands are generated when the map is evaluated
but the current index is not updated with the value of these glIndex com-
mands.

GL_MAP1_COLOR_4 Each control point is four floating-point values representing red, green, blue,
and alpha. Internal glColor4 commands are generated when the map is
evaluated but the current color is not updated with the value of these
glColor4 commands.

GL_MAP1_NORMAL Each control point is three floating-point values representing the x, y,
and z components of a normal vector. Internal glNormal commands are
generated when the map is evaluated but the current normal is not updated
with the value of these glNormal commands.

GL_MAP1_TEXTURE_COORD_1
Each control point is a single floating-point value representing the s tex-
ture coordinate. Internal
glTexCoord1 commands are generated when the map is evaluated but the
current texture coordinates are not updated with the value of these glTex-
Coord commands.

GL_MAP1_TEXTURE_COORD_2
Each control point is two floating-point values representing the s and t
texture coordinates. Internal
glTexCoord2 commands are generated when the map is evaluated but the
current texture coordinates are not updated with the value of these glTex-
Coord commands.

GL_MAP1_TEXTURE_COORD_3
Each control point is three floating-point values representing the s, t,
and r texture coordinates. Internal glTexCoord3 commands are gen-
erated when the map is evaluated but the current texture coordinates are not
updated with the value of these glTexCoord commands.

July 22, 1997 Page 2

���� ����

GGLLMMAAPP11(()) UUNNIIXX SSyysstteemm VV GGLLMMAAPP11(())

GL_MAP1_TEXTURE_COORD_4
Each control point is four floating-point values representing the s, t,
r, and q texture coordinates. Internal
glTexCoord4 commands are generated when the map is evaluated but the
current texture coordinates are not updated with the value of these glTex-
Coord commands.

stride, order, and points define the array addressing for accessing the control points. points is the location
of the first control point, which occupies one, two, three, or four contiguous memory locations, depending
on which map is being defined. order is the number of control points in the array. stride specifies how
many float or double locations to advance the internal memory pointer to reach the next control point.

NNOOTTEESS
As is the case with all GL commands that accept pointers to data, it is as if the contents of points were
copied by glMap1 before glMap1 returns. Changes to the contents of points have no effect after glMap1
is called.

EERRRROORRSS
GL_INVALID_ENUM is generated if target is not an accepted value.

GL_INVALID_VALUE is generated if u1 is equal to u2.

GL_INVALID_VALUE is generated if stride is less than the number of values in a control point.

GL_INVALID_VALUE is generated if order is less than 1 or greater than the return value of
GL_MAX_EVAL_ORDER.

GL_INVALID_OPERATION is generated if glMap1 is executed between the execution of glBegin and
the corresponding execution of glEnd.

AASSSSOOCCIIAATTEEDD GGEETTSS
glGetMap
glGet with argument GL_MAX_EVAL_ORDER
glIsEnabled with argument GL_MAP1_VERTEX_3
glIsEnabled with argument GL_MAP1_VERTEX_4
glIsEnabled with argument GL_MAP1_INDEX
glIsEnabled with argument GL_MAP1_COLOR_4
glIsEnabled with argument GL_MAP1_NORMAL
glIsEnabled with argument GL_MAP1_TEXTURE_COORD_1
glIsEnabled with argument GL_MAP1_TEXTURE_COORD_2
glIsEnabled with argument GL_MAP1_TEXTURE_COORD_3
glIsEnabled with argument GL_MAP1_TEXTURE_COORD_4

SSEEEE AALLSSOO
glBegin, glColor, glEnable, glEvalCoord, glEvalMesh, glEvalPoint, glMap2, glMapGrid, glNormal,
glTexCoord, glVertex

Page 3 July 22, 1997

