
���� ����

GGLLPPIIXXEELLSSTTOORREE(()) UUNNIIXX SSyysstteemm VV GGLLPPIIXXEELLSSTTOORREE(())

NNAAMMEE
glPixelStoref, glPixelStorei − set pixel storage modes

CC SSPPEECCIIFFIICCAATTIIOONN
void glPixelStoref(GLenum pname,

GLfloat param)
void glPixelStorei(GLenum pname,

GLint param)

delim $$

PPAARRAAMMEETTEERRSS
pname Specifies the symbolic name of the parameter to be set. Six values affect the packing of pixel data

into memory: GL_PACK_SWAP_BYTES, GL_PACK_LSB_FIRST,
GL_PACK_ROW_LENGTH, GL_PACK_SKIP_PIXELS, GL_PACK_SKIP_ROWS, and
GL_PACK_ALIGNMENT. Six more affect the unpacking of pixel data from memory:
GL_UNPACK_SWAP_BYTES, GL_UNPACK_LSB_FIRST,
GL_UNPACK_ROW_LENGTH, GL_UNPACK_SKIP_PIXELS,
GL_UNPACK_SKIP_ROWS, and GL_UNPACK_ALIGNMENT.

param Specifies the value that pname is set to.

DDEESSCCRRIIPPTTIIOONN
glPixelStore sets pixel storage modes that affect the operation of subsequent glDrawPixels and glRead-
Pixels as well as the unpacking of polygon stipple patterns (see glPolygonStipple), bitmaps (see glBit-
map), and texture patterns (see glTexImage1D, glTexImage2D, glTexSubImage1D, and
glTexSubImage2D).

pname is a symbolic constant indicating the parameter to be set, and param is the new value. Six of the
twelve storage parameters affect how pixel data is returned to client memory, and are therefore significant
only for glReadPixels commands. They are as follows:

GL_PACK_SWAP_BYTES
If true, byte ordering for multibyte color components, depth components, color indices, or
stencil indices is reversed. That is, if a four-byte component consists of bytes $b sub 0$, $b
sub 1$, $b sub 2$, $b sub 3$, it is stored in memory as $b sub 3$, $b sub 2$, $b sub 1$, $b sub
0$ if GL_PACK_SWAP_BYTES is true. GL_PACK_SWAP_BYTES has no effect on the
memory order of components within a pixel, only on the order of bytes within components or
indices. For example, the three components of a GL_RGB format pixel are always stored
with red first, green second, and blue third, regardless of the value of
GL_PACK_SWAP_BYTES.

GL_PACK_LSB_FIRST
If true, bits are ordered within a byte from least significant to most significant; otherwise, the
first bit in each byte is the most significant one. This parameter is significant for bitmap data
only.

GL_PACK_ROW_LENGTH
If greater than 0, GL_PACK_ROW_LENGTH defines the number of pixels in a row. If the
first pixel of a row is placed at location p in memory, then the location of the first pixel of
the next row is obtained by skipping

$k ˜=˜ left { lpile { n l above {a over s left ceiling { s n l } over a right ceiling}} ˜˜ lpile {s >= a above s < a }$

components or indices, where n is the number of components or indices in a pixel, l is the
number of pixels in a row (GL_PACK_ROW_LENGTH if it is greater than 0, the $width$

Page 1 July 22, 1997

���� ����

GGLLPPIIXXEELLSSTTOORREE(()) UUNNIIXX SSyysstteemm VV GGLLPPIIXXEELLSSTTOORREE(())

argument to the pixel routine otherwise), a is the value of GL_PACK_ALIGNMENT, and
s is the size, in bytes, of a single component (if $ a < s$, then it is as if $a = s$). In the case
of 1-bit values, the location of the next row is obtained by skipping

$k ˜=˜ 8 a left ceiling { n l } over { 8 a } right ceiling$

components or indices.

The word component in this description refers to the nonindex values red, green, blue, alpha,
and depth. Storage format GL_RGB, for example, has three components per pixel: first red,
then green, and finally blue.

GL_PACK_SKIP_PIXELS and GL_PACK_SKIP_ROWS
These values are provided as a convenience to the programmer; they provide no functionality
that cannot be duplicated simply by incrementing the pointer passed to glReadPixels. Setting
GL_PACK_SKIP_PIXELS to i is equivalent to incrementing the pointer by $i n$ com-
ponents or indices, where n is the number of components or indices in each pixel. Setting
GL_PACK_SKIP_ROWS to j is equivalent to incrementing the pointer by $j k$ com-
ponents or indices, where k is the number of components or indices per row, as just com-
puted in the GL_PACK_ROW_LENGTH section.

GL_PACK_ALIGNMENT
Specifies the alignment requirements for the start of each pixel row in memory. The allowable
values are 1 (byte-alignment), 2 (rows aligned to even-numbered bytes), 4 (word-alignment),
and 8 (rows start on double-word boundaries).

The other six of the twelve storage parameters affect how pixel data is read from client memory. These
values are significant for glDrawPixels, glTexImage1D, glTexImage2D, glTexSubImage1D,
glTexSubImage2D, glBitmap, and
glPolygonStipple. They are as follows:

GL_UNPACK_SWAP_BYTES
If true, byte ordering for multibyte color components, depth components, color indices, or stencil
indices is reversed. That is, if a four-byte component consists of bytes $b sub 0$, $b sub 1$, $b
sub 2$, $b sub 3$, it is taken from memory as $b sub 3$, $b sub 2$, $b sub 1$, $b sub 0$ if
GL_UNPACK_SWAP_BYTES is true. GL_UNPACK_SWAP_BYTES has no effect on the
memory order of components within a pixel, only on the order of bytes within components or
indices. For example, the three components of a GL_RGB format pixel are always stored with
red first, green second, and blue third, regardless of the value of GL_UNPACK_SWAP_BYTES.

GL_UNPACK_LSB_FIRST
If true, bits are ordered within a byte from least significant to most significant; otherwise, the first
bit in each byte is the most significant one. This is relevant only for bitmap data.

GL_UNPACK_ROW_LENGTH
If greater than 0, GL_UNPACK_ROW_LENGTH defines the number of pixels in a row. If the
first pixel of a row is placed at location p in memory, then the location of the first pixel of the
next row is obtained by skipping

$k ˜=˜ left { lpile { n l above {a over s left ceiling { s n l } over a right ceiling}} ˜˜ lpile {s >= a above s < a }$

components or indices, where n is the number of components or indices in a pixel, l is the
number of pixels in a row (GL_UNPACK_ROW_LENGTH if it is greater than 0, the $width$
argument to the pixel routine otherwise), a is the value of GL_UNPACK_ALIGNMENT, and
s is the size, in bytes, of a single component (if $ a < s$, then it is as if $a = s$). In the case of
1-bit values, the location of the next row is obtained by skipping

July 22, 1997 Page 2

���� ����

GGLLPPIIXXEELLSSTTOORREE(()) UUNNIIXX SSyysstteemm VV GGLLPPIIXXEELLSSTTOORREE(())

$k ˜=˜ 8 a left ceiling { n l } over { 8 a } right ceiling$

components or indices.

The word component in this description refers to the nonindex values red, green, blue, alpha, and
depth. Storage format GL_RGB, for example, has three components per pixel: first red, then
green, and finally blue.

GL_UNPACK_SKIP_PIXELS and GL_UNPACK_SKIP_ROWS
These values are provided as a convenience to the programmer; they provide no functionality that
cannot be duplicated by incrementing the pointer passed to glDrawPixels, glTexImage1D,
glTexImage2D, glTexSubImage1D, glTexSubImage2D, glBitmap, or glPolygonStipple. Set-
ting GL_UNPACK_SKIP_PIXELS to i is equivalent to incrementing the pointer by $i n$
components or indices, where n is the number of components or indices in each pixel. Setting
GL_UNPACK_SKIP_ROWS to j is equivalent to incrementing the pointer by $j k$ com-
ponents or indices, where k is the number of components or indices per row, as just computed
in the GL_UNPACK_ROW_LENGTH section.

GL_UNPACK_ALIGNMENT
Specifies the alignment requirements for the start of each pixel row in memory. The allowable
values are 1 (byte-alignment), 2 (rows aligned to even-numbered bytes), 4 (word-alignment), and
8 (rows start on double-word boundaries).

The following table gives the type, initial value, and range of valid values for each storage parameter that
can be set with glPixelStore.

���
pname type initial value valid range��

GL_PACK_SWAP_BYTES boolean false true or false
GL_PACK_LSB_FIRST boolean false true or false

GL_PACK_ROW_LENGTH integer 0 [0,∞)
GL_PACK_SKIP_ROWS integer 0 [0,∞)
GL_PACK_SKIP_PIXELS integer 0 [0,∞)
GL_PACK_ALIGNMENT integer 4 1, 2, 4, or 8���

GL_UNPACK_SWAP_BYTES boolean false true or false
GL_UNPACK_LSB_FIRST boolean false true or false

GL_UNPACK_ROW_LENGTH integer 0 [0,∞)
GL_UNPACK_SKIP_ROWS integer 0 [0,∞)
GL_UNPACK_SKIP_PIXELS integer 0 [0,∞)
GL_UNPACK_ALIGNMENT integer 4 1, 2, 4, or 8���

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

glPixelStoref can be used to set any pixel store parameter. If the parameter type is boolean, then if param
is 0, the parameter is false; otherwise it is set to true. If pname is a integer type parameter, param is
rounded to the nearest integer.

Likewise, glPixelStorei can also be used to set any of the pixel store parameters. Boolean parameters are
set to false if param is 0 and true otherwise.

NNOOTTEESS
The pixel storage modes in effect when glDrawPixels, glReadPixels, glTexImage1D, glTexImage2D,
glTexSubImage1D, glTexSubImage2D, glBitmap, or glPolygonStipple is placed in a display list control
the interpretation of memory data. The pixel storage modes in effect when a display list is executed are not
significant.

Pixel storage modes are client state and must be pushed and restored using
glPushClientAttrib and glPopClientAttrib.

Page 3 July 22, 1997

���� ����

GGLLPPIIXXEELLSSTTOORREE(()) UUNNIIXX SSyysstteemm VV GGLLPPIIXXEELLSSTTOORREE(())

EERRRROORRSS
GL_INVALID_ENUM is generated if pname is not an accepted value.

GL_INVALID_VALUE is generated if a negative row length, pixel skip, or row skip value is specified, or
if alignment is specified as other than 1, 2, 4, or 8.

GL_INVALID_OPERATION is generated if glPixelStore is executed between the execution of glBegin
and the corresponding execution of glEnd.

AASSSSOOCCIIAATTEEDD GGEETTSS
glGet with argument GL_PACK_SWAP_BYTES
glGet with argument GL_PACK_LSB_FIRST
glGet with argument GL_PACK_ROW_LENGTH
glGet with argument GL_PACK_SKIP_ROWS
glGet with argument GL_PACK_SKIP_PIXELS
glGet with argument GL_PACK_ALIGNMENT
glGet with argument GL_UNPACK_SWAP_BYTES
glGet with argument GL_UNPACK_LSB_FIRST
glGet with argument GL_UNPACK_ROW_LENGTH
glGet with argument GL_UNPACK_SKIP_ROWS
glGet with argument GL_UNPACK_SKIP_PIXELS
glGet with argument GL_UNPACK_ALIGNMENT

SSEEEE AALLSSOO
glBitmap, glDrawPixels, glPixelMap, glPixelTransfer, glPixelZoom,
glPolygonStipple, glPushClientAttrib, glReadPixels, glTexImage1D, glTexImage2D,
glTexSubImage1D, glTexSubImage2D

July 22, 1997 Page 4

