
���� ����

GGLLRREEAADDPPIIXXEELLSS(()) UUNNIIXX SSyysstteemm VV GGLLRREEAADDPPIIXXEELLSS(())

NNAAMMEE
glReadPixels − read a block of pixels from the frame buffer

CC SSPPEECCIIFFIICCAATTIIOONN
void glReadPixels(GLint x,

GLint y,
GLsizei width,
GLsizei height,
GLenum format,
GLenum type,
GLvoid *pixels)

delim $$

PPAARRAAMMEETTEERRSS
x, y

Specify the window coordinates of the first pixel that is read from the frame buffer. This location is the
lower left corner of a rectangular block of pixels.

width, height
Specify the dimensions of the pixel rectangle. width and height of one correspond to a single pixel.

format
Specifies the format of the pixel data. The following symbolic values are accepted:
GL_COLOR_INDEX, GL_STENCIL_INDEX, GL_DEPTH_COMPONENT, GL_RED,
GL_GREEN, GL_BLUE, GL_ALPHA, GL_RGB, GL_RGBA, GL_LUMINANCE, and
GL_LUMINANCE_ALPHA.

type
Specifies the data type of the pixel data. Must be one of GL_UNSIGNED_BYTE, GL_BYTE,
GL_BITMAP, GL_UNSIGNED_SHORT, GL_SHORT, GL_UNSIGNED_INT, GL_INT, or
GL_FLOAT.

pixels
Returns the pixel data.

DDEESSCCRRIIPPTTIIOONN
glReadPixels returns pixel data from the frame buffer, starting with the pixel whose lower left corner is at
location (x, y), into client memory starting at location pixels. Several parameters control the processing of
the pixel data before it is placed into client memory. These parameters are set with three commands:
glPixelStore, glPixelTransfer, and glPixelMap. This reference page describes the effects on glReadPix-
els of most, but not all of the parameters specified by these three commands.

glReadPixels returns values from each pixel with lower left corner at (x + i, y + j) for 0≤i<width
and 0≤j<height. This pixel is said to be the ith pixel in the jth row. Pixels are returned in row order
from the lowest to the highest row, left to right in each row.

format specifies the format for the returned pixel values; accepted values are:

GL_COLOR_INDEX
Color indices are read from the color buffer selected by glReadBuffer. Each index is con-
verted to fixed point, shifted left or right depending on the value and sign of
GL_INDEX_SHIFT, and added to GL_INDEX_OFFSET. If GL_MAP_COLOR is
GL_TRUE, indices are replaced by their mappings in the table GL_PIXEL_MAP_I_TO_I.

GL_STENCIL_INDEX
Stencil values are read from the stencil buffer. Each index is converted to fixed point, shifted
left or right depending on the value and sign of GL_INDEX_SHIFT, and added to

Page 1 July 22, 1997

���� ����

GGLLRREEAADDPPIIXXEELLSS(()) UUNNIIXX SSyysstteemm VV GGLLRREEAADDPPIIXXEELLSS(())

GL_INDEX_OFFSET. If GL_MAP_STENCIL is GL_TRUE, indices are replaced by their
mappings in the table GL_PIXEL_MAP_S_TO_S.

GL_DEPTH_COMPONENT
Depth values are read from the depth buffer. Each component is converted to floating point
such that the minimum depth value maps to 0 and the maximum value maps to 1. Each com-
ponent is then multiplied by GL_DEPTH_SCALE, added to GL_DEPTH_BIAS, and finally
clamped to the range [0,1].

GL_RED

GL_GREEN

GL_BLUE

GL_ALPHA

GL_RGB

GL_RGBA

GL_LUMINANCE

GL_LUMINANCE_ALPHA
Processing differs depending on whether color buffers store color indices or RGBA color com-
ponents. If color indices are stored, they are read from the color buffer selected by glRead-
Buffer. Each index is converted to fixed point, shifted left or right depending on the value and
sign of GL_INDEX_SHIFT, and added to GL_INDEX_OFFSET. Indices are then replaced
by the red, green, blue, and alpha values obtained by indexing the tables
GL_PIXEL_MAP_I_TO_R, GL_PIXEL_MAP_I_TO_G, GL_PIXEL_MAP_I_TO_B,
and GL_PIXEL_MAP_I_TO_A. Each table must be of size 2ˆn, but n may be different for
different tables. Before an index is used to look up a value in a table of size 2ˆn, it must be
masked against 2ˆn-1.

If RGBA color components are stored in the color buffers, they are read from the color buffer
selected by glReadBuffer. Each color component is converted to floating point such that zero
intensity maps to 0.0 and full intensity maps to 1.0. Each component is then multiplied by
GL_c_SCALE and added to GL_c_BIAS, where c is RED, GREEN, BLUE, or ALPHA.
Finally, if GL_MAP_COLOR is GL_TRUE, each component is clamped to the range [0,1],
scaled to the size of its corresponding table, and is then replaced by its mapping in the table
GL_PIXEL_MAP_c_TO_c, where c is R, G, B, or A.

Unneeded data is then discarded. For example, GL_RED discards the green, blue, and alpha
components, while GL_RGB discards only the alpha component. GL_LUMINANCE com-
putes a single-component value as the sum of the red, green, and blue components, and
GL_LUMINANCE_ALPHA does the same, while keeping alpha as a second value. The
final values are clamped to the range [0,1].

The shift, scale, bias, and lookup factors just described are all specified by
glPixelTransfer. The lookup table contents themselves are specified by glPixelMap.

Finally, the indices or components are converted to the proper format, as specified by type. If format is
GL_COLOR_INDEX or GL_STENCIL_INDEX and type is not GL_FLOAT, each index is masked
with the mask value given in the following table. If type is GL_FLOAT, then each integer index is con-
verted to single-precision floating-point format.

If format is GL_RED, GL_GREEN, GL_BLUE, GL_ALPHA, GL_RGB, GL_RGBA,
GL_LUMINANCE, or GL_LUMINANCE_ALPHA and type is not GL_FLOAT, each component is
multiplied by the multiplier shown in the following table. If type is GL_FLOAT, then each component is
passed as is (or converted to the client’s single-precision floating-point format if it is different from the one
used by the GL).

July 22, 1997 Page 2

���� ����

GGLLRREEAADDPPIIXXEELLSS(()) UUNNIIXX SSyysstteemm VV GGLLRREEAADDPPIIXXEELLSS(())

��
type index mask component conversion��

GL_UNSIGNED_BYTE $2"ˆ"8 - 1$ $(2"ˆ"8 - 1) c$
GL_BYTE $2"ˆ"7 - 1$ $[(2"ˆ"8 - 1) c - 1] / 2$

GL_BITMAP 1 1
GL_UNSIGNED_SHORT $2"ˆ"16 - 1$ $(2"ˆ"16 - 1) c$

GL_SHORT $2"ˆ"15 - 1$ $[(2"ˆ"16 - 1) c - 1] / 2$
GL_UNSIGNED_INT $2"ˆ"32 - 1$ $(2"ˆ"32 - 1) c$

GL_INT $2"ˆ"31 - 1$ $[(2"ˆ"32 - 1) c - 1] / 2$
GL_FLOAT none c���

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

Return values are placed in memory as follows. If format is GL_COLOR_INDEX,
GL_STENCIL_INDEX, GL_DEPTH_COMPONENT, GL_RED, GL_GREEN, GL_BLUE,
GL_ALPHA, or GL_LUMINANCE, a single value is returned and the data for the ith pixel in the jth
row is placed in location $(j)˜"width"˜+˜i$. GL_RGB returns three values, GL_RGBA returns four
values, and GL_LUMINANCE_ALPHA returns two values for each pixel, with all values corresponding
to a single pixel occupying contiguous space in pixels. Storage parameters set by glPixelStore, such as
GL_PACK_LSB_FIRST and GL_PACK_SWAP_BYTES, affect the way that data is written into
memory. See glPixelStore for a description.

NNOOTTEESS
Values for pixels that lie outside the window connected to the current GL context are undefined.

If an error is generated, no change is made to the contents of pixels.

EERRRROORRSS
GL_INVALID_ENUM is generated if format or type is not an accepted value.

GL_INVALID_ENUM is generated if type is GL_BITMAP and format is not GL_COLOR_INDEX or
GL_STENCIL_INDEX.

GL_INVALID_VALUE is generated if either width or height is negative.

GL_INVALID_OPERATION is generated if format is GL_COLOR_INDEX and the color buffers store
RGBA color components.

GL_INVALID_OPERATION is generated if format is GL_STENCIL_INDEX and there is no stencil
buffer.

GL_INVALID_OPERATION is generated if format is GL_DEPTH_COMPONENT and there is no
depth buffer.

GL_INVALID_OPERATION is generated if glReadPixels is executed between the execution of glBegin
and the corresponding execution of glEnd.

AASSSSOOCCIIAATTEEDD GGEETTSS
glGet with argument GL_INDEX_MODE

SSEEEE AALLSSOO
glCopyPixels, glDrawPixels, glPixelMap, glPixelStore, glPixelTransfer,
glReadBuffer

Page 3 July 22, 1997

