
���� ����

GGLLBBEEGGIINN(()) UUNNIIXX SSyysstteemm VV GGLLBBEEGGIINN(())

NNAAMMEE
glBegin, glEnd − delimit the vertices of a primitive or a group of like primitives

CC SSPPEECCIIFFIICCAATTIIOONN
void glBegin(GLenum mode)

PPAARRAAMMEETTEERRSS
mode Specifies the primitive or primitives that will be created from vertices presented between glBegin

and the subsequent glEnd. Ten symbolic constants are accepted: GL_POINTS, GL_LINES,
GL_LINE_STRIP, GL_LINE_LOOP, GL_TRIANGLES, GL_TRIANGLE_STRIP,
GL_TRIANGLE_FAN, GL_QUADS, GL_QUAD_STRIP, and GL_POLYGON.

CC SSPPEECCIIFFIICCAATTIIOONN
void glEnd(void)

DDEESSCCRRIIPPTTIIOONN
glBegin and glEnd delimit the vertices that define a primitive or a group of like primitives. glBegin
accepts a single argument that specifies in which of ten ways the vertices are interpreted. Taking n as an
integer count starting at one, and N as the total number of vertices specified, the interpretations are as fol-
lows:

GL_POINTS Treats each vertex as a single point. Vertex n defines point n. N points are
drawn.

GL_LINES Treats each pair of vertices as an independent line segment. Vertices 2n−1 and
2n define line n. N/2 lines are drawn.

GL_LINE_STRIP Draws a connected group of line segments from the first vertex to the last. Ver-
tices n and n+1 define line n. N−1 lines are drawn.

GL_LINE_LOOP Draws a connected group of line segments from the first vertex to the last, then
back to the first. Vertices n and n+1 define line n. The last line, however, is
defined by vertices N and 1. N lines are drawn.

GL_TRIANGLES Treats each triplet of vertices as an independent triangle. Vertices 3n−2, 3n-1,
and 3n define triangle n. N/3 triangles are drawn.

GL_TRIANGLE_STRIP
Draws a connected group of triangles. One triangle is defined for each vertex
presented after the first two vertices. For odd n, vertices n, n+1, and n+2 define
triangle n. For even n, vertices n+1, n, and n+2 define triangle n. N−2 triangles
are drawn.

GL_TRIANGLE_FAN Draws a connected group of triangles. One triangle is defined for each vertex
presented after the first two vertices. Vertices 1, n+1, and n+2 define triangle n.
N−2 triangles are drawn.

GL_QUADS Treats each group of four vertices as an independent quadrilateral. Vertices
4n−3, 4n-2, 4n-1, and 4n define quadrilateral n. N/4 quadrilaterals are drawn.

GL_QUAD_STRIP Draws a connected group of quadrilaterals. One quadrilateral is defined for each
pair of vertices presented after the first pair. Vertices 2n−1, 2n, 2n+2, and 2n+1
define quadrilateral n. N/2−1 quadrilaterals are drawn. Note that the order in
which vertices are used to construct a quadrilateral from strip data is different
from that used with independent data.

GL_POLYGON Draws a single, convex polygon. Vertices 1 through N define this polygon.

Page 1 July 22, 1997

���� ����

GGLLBBEEGGIINN(()) UUNNIIXX SSyysstteemm VV GGLLBBEEGGIINN(())

Only a subset of GL commands can be used between glBegin and glEnd. The commands are glVertex,
glColor, glIndex, glNormal, glTexCoord, glEvalCoord, glEvalPoint, glArrayElement, glMaterial, and
glEdgeFlag. Also, it is acceptable to use glCallList or glCallLists to execute display lists that include
only the preceding commands. If any other GL command is executed between glBegin and glEnd, the
error flag is set and the command is ignored.

Regardless of the value chosen for mode, there is no limit to the number of vertices that can be defined
between glBegin and glEnd. Lines, triangles, quadrilaterals, and polygons that are incompletely specified
are not drawn. Incomplete specification results when either too few vertices are provided to specify even a
single primitive or when an incorrect multiple of vertices is specified. The incomplete primitive is ignored;
the rest are drawn.

The minimum specification of vertices for each primitive is as follows: 1 for a point, 2 for a line, 3 for a
triangle, 4 for a quadrilateral, and 3 for a polygon. Modes that require a certain multiple of vertices are
GL_LINES (2), GL_TRIANGLES (3), GL_QUADS (4), and GL_QUAD_STRIP (2).

EERRRROORRSS
GL_INVALID_ENUM is generated if mode is set to an unaccepted value.

GL_INVALID_OPERATION is generated if glBegin is executed between a glBegin and the correspond-
ing execution of glEnd.

GL_INVALID_OPERATION is generated if glEnd is executed without being preceded by a glBegin.

GL_INVALID_OPERATION is generated if a command other than glVertex, glColor, glIndex, glNor-
mal, glTexCoord, glEvalCoord, glEvalPoint, glArrayElement, glMaterial, glEdgeFlag, glCallList, or
glCallLists is executed between the execution of glBegin and the corresponding execution glEnd.

Execution of glEnableClientState, glDisableClientState, glEdgeFlagPointer, glTexCoordPointer,
glColorPointer, glIndexPointer, glNormalPointer,
glVertexPointer, glInterleavedArrays, or glPixelStore is not allowed after a call to glBegin and before
the corresponding call to glEnd, but an error may or may not be generated.

SSEEEE AALLSSOO
glArrayElement, glCallList, glCallLists, glColor, glEdgeFlag, glEvalCoord,
glEvalPoint, glIndex, glMaterial, glNormal, glTexCoord, glVertex

July 22, 1997 Page 2

