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This paper considers the flocking problem of a group of autonomous agents moving in Euclidean space with
a virtual leader. We investigate the dynamic properties of the group for the case where the state of the virtual
leader may be time-varying and the topology of the neighbouring relations between agents is dynamic. To track
such a leader, we introduce a set of switching control laws that enable the entire group to generate the desired
stable flocking motion. The control law acting on each agent relies on the state information of its neighbouring
agents and the external reference signal (or ‘virtual leader’). Then we prove that, if the acceleration of the virtual
leader is known, then each agent can follow the virtual leader, and the convergence rate of the centre of mass
(CoM) can be estimated; if the acceleration is unknown, then the velocities of all agents asymptotically approach
the velocity of the CoM, thus the flocking motion can be obtained. However, in this case, the final velocity of the
group may not be equal to the desired velocity. Numerical simulations are worked out to illustrate our theoretical
results.
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1. Introduction

Flocking is ubiquitous in nature, e.g., flocking of birds,

schooling of fish, herding of animals, and swarming of

bacteria, and it is a form of collective behaviour of

multiple interacting agents. In recent years, there has

been increasing research interest in the distributed

control/coordination of the motion of multiple

dynamic agents/robots and the control design of

multi-agent systems. In a multi-agent system, agents

are usually coupled and interconnected with some

simple rules. Understanding the mechanisms and

operational principles in them can provide useful

ideas for developing formation control, distributed

cooperative control and coordination of multiple

mobile autonomous agents/robots. Applications of

multi-agent systems can be found in many areas,

such as biology(e.g., aggregation behaviour of ani-

mals), physics (e.g., collective motion of particles),

robotics and control engineering (e.g., formation

control of robots, cooperative control of unmanned

aerial vehicles (UAVs), scheduling of automated high-

way systems, coordination/formation of underwater

vehicles and attitude alignment of satellite clusters).

There has been considerable effort in modelling and

exploring the collective dynamics, and trying to

understand how a group of autonomous creatures or

man-made mobile autonomous agents/robots can
cluster in formations without centralised coordination

and control (Reynolds 1987; Vicsek, Czirok,
Ben-Jacob, Cohen and Shochet 1995; Leonard and
Fiorelli 2001; Gazi and Passino 2003; Jadbabaie, Lin
and Morse 2003; Tanner, Jadbabaie and Pappas 2003,
2007; Fax and Murray 2004; Lin, Broucke and Francis
2004; Olfati-Saber and Murray 2004; Savkin 2004;
Shi, Wang, Chu and Xu 2005; Chu, Wang, Chen and
Mu 2006; Hong, Hu and Gao 2006; Olfati-Saber 2006;
Shi, Wang and Chu 2006a, Shi, Wang, Chu and Xiao
2006b). Many results have been obtained with local
rules applied to each agent in a considered multi-agent
system.

Stimulated by the simulation results in Reynolds
(1987), Tanner, Jadbabaie and Pappas (2003, 2007)

considered a group of mobile agents moving in the

plane with double-integrator dynamics. They intro-

duced a set of control laws that enable the group to

generate stable flocking motion, but these control laws

cannot regulate the final speed and heading of the

group. Due to the fact that in some cases, the

regulation of agents has certain purposes such as

achieving desired common speed and heading, or

arriving at a desired destination, the cooperation/

coordination of multiple mobile agents with some
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virtual leaders is an interesting and important topic.
There have been some papers dealing with this issue in
the literature. For example, Leonard and Fiorelli
(2001) viewed reference points as virtual leaders for
manipulating the geometry of an autonomous vehicle
group and directing the motion of the group; Olfati-
Saber (2006) used virtual leaders to accomplish
obstacle avoidance; Shi et al. (2006a) regarded the
reference signal as a virtual leader for guiding the agent
group to move at the desired constant velocity. In
Olfati-Saber (2006) and Shi et al. (2006a), the authors
used different moving reference frames to analyse the
flocking problem. Olfati-Saber (2006) chose the posi-
tion of the centre of mass (CoM) of the group as the
origin of the moving frame, whereas Shi et al. (2006a)
chose the position of the virtual leader as the origin of
the moving frame. The difference between these two
approaches will be discussed in detail in the paper.

In this paper, we consider the flocking problem of
multiple mobile autonomous agents moving in an n-
dimensional Euclidean space with point mass
dynamics. We divide the considered problem into
two issues, and propose the corresponding control laws
and develop Lyapunov-based approach to analyse
them. First, by viewing the external reference signal as
a virtual leader, we show that, if all agents know the
velocity and acceleration of the virtual leader, then
they eventually move ahead at the desired velocity and
maintain constant distances between them (called
‘strong flocking’). This means that all agents can
track the virtual leader. Secondly, for the case where
we let all agents move ahead at a common velocity and
do not care about the explicit value (called ‘weak
flocking’), we prove that the weak flocking can be
achieved if all agents only know the velocity of the
virtual leader. The flocking problem is analysed in
different cases and the main results are listed in a table
in x 5.

This paper is organised as follows. In x 2, we
formulate the problem to be investigated. Then we
design a set of local control laws and analyse the
stability of the resulting closed-loop system in x 3.
Section 4 gives numerical simulations to illustrate the
theoretical results. Finally, we briefly summarise our
results in x 5.

2. Problem formulation

In this paper, we consider a group of N agents moving
in an n-dimensional Euclidean space; each has point
mass dynamics described by

_xi ¼ vi,

mi _v
i ¼ ui � kiv

i, i ¼ 1, . . . ,N,

)
ð1Þ

where xi2R
n is the position vector of agent i, vi2R

n is

its velocity vector, mi4 0 is its mass, ui2R
n is the

control input acting on agent i, ki4 0 is the ‘velocity

damping gain’, and �kiv
i is the velocity damping term.

Here we assume that the damping force is in

proportion to the magnitude of velocity and the
damping gains ki, i¼ 1, . . . ,N, are not equal to each
other.

Our main objective is to study the flocking problem

of how to make the entire group move at a desired
velocity and maintain constant distances between the

agents. The desired velocity is supposed to be a time-
varying and smooth function, which means that the
state of the virtual leader keeps changing. In order to

achieve our goal, we try to regulate each agent velocity
to the desired velocity, reduce the velocity differences

between neighbouring agents, regulate their distances
such that their potentials become minima, and at the
same time, compensate for the velocity damping.

Hence, we choose the control law ui for agent i to be

ui ¼ �i þ �i þ � i þ �i, ð2Þ

where �i is used to regulate the potential of agent i to

its minimum, �i is used to regulate the velocity of agent
i to the weighted average of the velocities of its
neighbours, � i is used to regulate the velocity of agent i

to the desired velocity, and �i is used to compensate for
the velocity damping (all to be designed later).

In the design of control law (2), �i can be

determined by an artificial social potential function,
Vi, a function of the relative distances between agent i
and its flockmates. Freedom from collisions and

cohesion in the group can be guaranteed by this
term. �i can be obtained according to the alignment or

velocity matching with neighbours among agents. � i is
designed based on the external signal, i.e., the desired

velocity and acceleration. �i can be simply taken to be
the reverse of the damping force.

We also consider the weak case of flocking
problem. Namely, in case the acceleration of the

virtual leader is not available to each agent, then we
can only design a control law to make all agents move
with a common velocity. However the velocity value

cannot be estimated explicitly.

Definition 1 (neighbouring graph): The neighbouring

graph, G¼ (V, E), is an undirected graph consisting
of a set of vertices, V ¼ {n1, . . . , nN}, indexed by the
agents in the group, and a set of edges,

E ¼ {(ni, nj)2V �V j kx
i
� xjk�R}, containing unor-

dered pairs of vertices that represent the neighbouring

relations, where R4 0 is a constant.

In the following we make use of the neighbouring
graph to describe the sensor information flow in
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the group. In G, an edge (ni, nj) means that agent i can
sense agent j, and it will regulate its state based on the
position and velocity of agent j. In this paper, we
mainly consider the dynamic and symmetric neigh-
bouring relations between agents. Let I ¼ {1, . . . ,N}.
We let N i, {j j kxijk�R}�In{i} be the set contain-
ing all neighbours of agent i, where xij¼xi� xj

denotes the relative position vector between agents i
and j;R4 0 can be viewed as the sensing radius of
the sensors. Here we assume that the sensors of all
agents have the same sensing range. During the
course of motion, the relative distances between
agents vary with time, so the neighbours of each
agent are not fixed, which generates the switching
neighbouring graph G�, where � is a switching signal
and is a piecewise constant function
�(t): [0,þ1)!P,P is a finite index set where the
number of the indices is equal to the number of the
connected graph G� in the group. The switching signal
� relies on the distances between agents according to
the local sensing range of each agent. In the
discussion to follow, we assume that the neighbouring
graph G� remains connected, which ensures that the
group will not be divided into several isolated
subgroups. In order to depict the potential between
the agents, we present the following definition.

Definition 2 (Tanner et al. 2007) (potential
function): Potential Vij is a differentiable, non-
negative function of the distance kxijk between agents
i and j, such that Vij(kxijk)!þ1 as kxijk! 0; Vij

attains its unique minimum when agents i and j are
located at a desired distance; ðd=dkxijkÞVijðkxijkÞ ¼ 0 if
kxijk4R.

Functions Vij, i, j¼ 1, . . . ,N, are the artificial social
potential functions that govern the interindividual
interactions. By the definition of Vij, we obtain that
if kxijk4R, then Vij(kxijk)¼Vij(R). One example of
such potential functions is the following:

where a, b, and R are some positive constants such that

b4 a/e and R4
ffiffiffiffiffiffiffiffi
b=a

p
. Note that the assumption

R4
ffiffiffiffiffiffiffiffi
b=a

p
is reasonable as this implies that the desired

distance between two agents is smaller than the agent’s

sensing range R. It is easy to see that Vij attains its

unique minimum a[1þ ln(b/a)] when kxijk ¼
ffiffiffiffiffiffiffiffi
b=a

p
.

Figure 1 depicts the curve of one potential function,

where a¼ 1, b¼ 1, and R¼ 2.

By the definition of Vij, the total potential of agent i

can be expressed as

Vi ¼
X
j2N i

VijðkxijkÞ þ
X

j =2N i, j6¼i

VijðRÞ:

Certainly, in reality, according to different cases, we

can define different interaction potential functions

such as the functions considered in Leonard

and Fiorelli (2001), Gazi and Passino (2003) and

Olfati-Saber (2006).

3. Main results

In this section, we first present explicit formulation for

the terms �i, �i, � i, and �i in the control law (2), then we

investigate the stability properties of the closed-loop

system by employing matrix analysis, algebraic graph

theory and nonsmooth analysis. For basic concepts

and results, we refer to Clarke (1983); Horn and

Johnson (1985); Paden and Sastry (1987); Shevitz and

Paden (1994) and Godsil and Royle (2001).

We take the control law ui for agent i to be

ui ¼ �
X

j2N i

rxiV
ij|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

�i

�
X

j2N i

wij v
i � vj

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�i

�hismi v
i � v0ðtÞ

� �
þ gimia0ðtÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

� i

þ kiv
i|{z}

�i

, ð4Þ

VijðkxijkÞ ¼

a ln kxijk2 þ
b

kxijk2
, 05 kxijk �

ffiffiffiffiffiffiffiffi
b=a

p
;

a 1þ lnðb=aÞ½ �þ cos 1þ
kxijk2 � ðb=aÞ

R2 � ðb=aÞ

� �
�

� 	
þ 1,

ffiffiffiffiffiffiffiffi
b=a

p
5 kxijk � R;

a 1þ lnðb=aÞ½ � þ 2, kxijk4R,

8>>>>><>>>>>:
ð3Þ

0 0.5 1 1.5 2 2.5 3 3.5 4 
0

1

2

3

4

5

6

7

8

9

10

||xij||

V
ij (

||x
ij |

|)

Figure 1. Potential function Vij.
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where wij� 0 and wii¼ 0, i, j¼ 1, . . . ,N, represent the
interaction coefficients; v0(t)2R

n is the desired velocity
and _v0ðtÞ ¼ a0ðtÞ; his � 0 represents the intensity of
influence of the reference signal on the motion of agent
i, his ¼ hi if agent i knows the desired velocity, where
hi4 0 is a constant, and is 0 otherwise; gi¼ 1 if agent i
knows the acceleration a0(t) and is 0 otherwise. wij¼ cij
is fixed if agent j is a neighbour of agent i, where cij4 0
(8i 6¼ j) is a constant, and is 0 otherwise. Here we
always assume that cij¼ cji, which means that the
interaction between agents is reciprocal. We write
W�¼ [wij]� 2R

N�N for the interaction coefficient
matrix (or ‘coupling matrix’). Thus, W� is always
symmetric, and by the assumption of the connectivity
of the neighbouring graph G�,W� is always irreducible.
During the course of motion, each agent regulates its
position and velocity based on the external signal and
the state information of its neighbours. However, it is
known that, in reality, because of the influence of some
external factors, the reference signal is not always
detected by all agents in the group. In this paper, we
will consider the case where the signal is sent
continuously and at any time, there exists at least one
agent in the group who can detect it, i.e., there exists
hks ¼ hk 4 0 for some k2I , where s is a switching
signal and is a piecewise constant function
sðtÞ : ½0, þ1Þ ! bP, bP is a finite index set where the
number of the indices is equal to 2N� 1. Notice that
the switching signals s and � in the switching
neighbouring graph G� may be different, so we
combine the two switching signals into one switching
signal �ðtÞ : ½0, þ1Þ ! P, P is a finite index set where
the number of the indices is equal to the number of the
elements of set fðx, yÞ j 8x 2 P, 8y 2 bPg.

Since the neighbour set N i of each agent i is time-
varying and the agents who know the external signal
at different times are different, then discontinuities
will be introduced to the right hand side of control
law (4). Hence, the agent dynamics is expressed in
terms of differential inclusions

_xi ¼ vi,

mi _v
i 2a:e: K ui � kiv

i

 �

, i ¼ 1, . . . ,N,

)
ð5Þ

where K[�] is a differential inclusion, and a.e. stands for
‘almost everywhere’.

3.1 Flocking control: group motion with
desired velocity

In this case, we assume that all agents know the desired
velocity v0(t) and the acceleration a0(t), i.e., h

i
s ¼ hi and

gi¼ 1 for all i2I . However, not all coefficients hi,
i¼ 1, . . . ,N, are considered in the design of the

control law. In the following, we assume that, at any

time, there exists at least one coefficient hks , k2I , to be

positive in control law (4). Then we have the following

results.

3.1.1 Stability analysis

Theorem 1: Taking the control law in (4), all agent

velocities in the group described in (5) asymptotically

approach the desired velocity, avoidance of collisions

between the agents is ensured, and the group final

configuration minimises all agent potentials.

This theorem becomes clear after Theorem 2 is proved,

so we proceed to present Theorem 2. We define the

following error vectors:

eip ¼ xi �

Z t

t0

v0ð�Þd� and eiv ¼ vi � v0ðtÞ,

where t is the time variable and t0 is the initial time.

Then eiv represents the velocity difference vector

between the actual velocity and the desired velocity

of agent i. It is easy to see that _eip ¼ eiv and
_eiv ¼ _vi � a0ðtÞ. Hence, the error dynamics is given by

_eip ¼ eiv,

mi _e
i
v 2

a:e: K ui � kiv
i �mia0ðtÞ


 �
, i ¼ 1, . . . ,N:

)
ð6Þ

Note that, in fact, we choose a moving reference frame

and take the position of the virtual leader as the origin

(called ‘the first moving reference frame’). By the

definition of Vij, it follows that VijðkxijkÞ ¼

VijðkeijpkÞ,
eVij, where eijp ¼ eip � ejp, and hence eVi ¼ Vi

and reip
eVij ¼ rxiV

ij: Moreover, by the symmetry of eVij

with respect to eijp and by eijp ¼ �e
ji
p , it follows that

reijp
eVij ¼ reip

eVij ¼ �rejp
eVij. Thus the control input for

agent i in the error system (6) has the following form:

ui ¼ �
X

j2N i

reip
eVij|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

�i

�
X

j2N i

wij e
i
v � ejv

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�i

�hi�mie
i
v þmia0ðtÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
� i

þ kiv
i|{z}

�i

: ð7Þ

Theorem 2: Taking the control law in (7), all agent

velocities in the system described in (6) asymptotically

approach zero, avoidance of collisions between the

agents is ensured, and the group final configuration

minimises all agent potentials.

Proof: Consider the following Lyapunov-like

function:

J ¼
1

2

XN
i¼1

eVi þmie
iT
v e

i
v

� 

:

46 H. Shi et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
P
u
r
d
u
e
 
U
n
i
v
e
r
s
i
t
y
]
 
A
t
:
 
1
6
:
1
8
 
1
9
 
D
e
c
e
m
b
e
r
 
2
0
0
8



It is easy to see that J is the sum of the total artificial

potential energy and the total kinetic energy of all

agents in the error system. Define the level set of J in

the space of agent velocities and relative distances in

the error system:

� ¼ eiv, e
ij
p

� 

j J � c, c4 0

n o
:

Though the neighbouring relations vary with time,

under the assumption of the connectivity of G�, the set

� is compact. This is because the set feiv, e
ij
pg with J� c

is closed by continuity. Moreover, boundedness can be

proved by the connectivity of G�. More specifically,

because G� is always connected, there must be a path

connecting any two agents i and j in the group and its

length does not exceed N� 1, and on the other hand,

the distance between two interconnected agents is not

more than R, hence, we have keijpk � ðN� 1ÞR. By

similar analysis, eiTv e
i
v � 2c=mi; thus keivk �

ffiffiffiffiffiffiffiffiffiffiffiffi
2c=mi

p
.

The invariance of � will be established in the sequel

once J is shown to be non-increasing.
Function J is differentiable, but its derivative along

the system’s trajectories is not single-valued, for we do

not know the value of _eiv at the switching instants. We

can only ensure that mi _e
i
v 2

a:e: K½ui � kiv
i �mia0ðtÞ�.

Since the potential function is differentiable at the

transition point, it does not introduce discontinuities

in the control law though the neighbouring graph is

time-varying. Hence,

mi _e
i
v 2

a:e: K �
X
j2N i

reip
eVij �

X
j2N i

wij e
i
v � ejv

� �
� hi�mie

i
v

24 35
� �

X
j2N i

reip
eVij þ K �

X
j2N i

wij e
i
v � ejv

� �
� hi�mie

i
v

24 35:
By the definition of function J, we have

@J ¼
XN
j¼2

re1p
eV1j

� 
T
, . . . ,

XN�1
j¼1

reNp
eVNj

� 
T
,

"

m1e
1T
v , . . . ,mNe

NT
v

#T

,

and _J 2a:e:
_eJ, where

_eJ �XN
i¼1

reip
eVi

� 
T
eiv � eTv

..

.

reip
eVi

..

.

0BBB@
1CCCA

þ eTv K


� ðL� 	 InÞev � ðH� 	 InÞev

�
¼ K �eTv ðL� þH�Þ 	 In½ �ev


 �
,

reip
eVi ¼

P
j2N i
reip

eVij ev ¼ ðe
1T
v , . . . , eNT

v Þ
T is the stack

vector of all agent velocity vectors in the error system;
L� ¼ ½lij�� 2 R

N�N with

lij ¼
�wij, i 6¼ j,XN

k¼1, k6¼i
wik, i ¼ j;

(
H� ¼ diagðh1�m1, . . . , hN�mNÞ; 	 stands for the
Kronecker product; and In is the identity matrix of
order n. Then, we get

_eJ � �co eTv L� þH�ð Þ 	 In½ �ev
� �

:

It is easy to see that L� is symmetric and has the
properties that each row sum is equal to 0, the diagonal
entries are positive, and all the other entries are
non-positive. Also, H� is a diagonal matrix with non-
negative entries and there exists at least one positive
diagonal entry. Furthermore, since the neighbouring
graph G� is connected, L� þH� is irreducible. Hence,
matrix L� þH� is irreducibly diagonally dominant.
By Corollary 6.2.27 in Horn and Johnson (1985),
it follows that matrix L� þH� is positive definite. Thus
�cofeTv ½ðL� þH�Þ 	 In�evg is an interval of the form
[l, 0] with l5 0. Therefore, for any z 2

_eJ, z� 0, and
only when e1v ¼ � � � ¼ eNv ¼ 0, 0 is contained in
�cofeTv ½ðL� þH�Þ 	 In�evg. This occurs only when
v1¼ � � �¼ vN¼ v0. It follows that _eiv ¼ 0, i¼ 1, . . . ,N,
and _eijp ¼ 0, 8(i, j)2I �I . Hence, according to
non-smooth version of LaSalle’s invariance principle
(Shevitz and Paden 1994), we know that the Filippov
solution trajectories of the system converge to the
largest invariant subset of the set defined by
S ¼ fev 2 � j 0 2

_eJg. In the set, the agent velocity
dynamics is _eiv ¼ �ð1=miÞ

P
j2N i
reip

eVij ¼ �ð1=miÞreip
eVi.

Thus, in steady state, all agent velocities in the error
system no longer change and equal zero, and
moreover, the potential eVi of each agent i is minimised.
Freedom from collisions between the agents
can be ensured since otherwise it will result ineVi !þ1: œ

Remark 1: Note that in case all agents know the
desired velocity and all coefficients hi, i¼ 1, . . . ,N, are
used to design the control law, the connectivity
condition in Theorems 1 and 2 can be weakened.
That is, all the agents can still move at the desired
velocity eventually even if the neighbouring graph is
not connected. In this case, the term �i in the control
law (4) should be remained to make sure collision-free
in the group. However, it is difficult to give a
theoretical analysis. Instead, we will present some
simulation results in x 4 to demonstrate this case.

Remark 2: By the analysis above, it is easy to see that,
when the coefficient his equals hi for all i2I in the
control law (4), the strong flocking motion can still be
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obtained though all agents do not regulate their
velocities according to their neighbouring agents, i.e.,
we can omit the term �i in (2).

Remark 3: If the coupling matrix W� is asymmetric,
we can regulate the control law acting on each agent to
generate the desired strong flocking motion. The main
analysis is as follows.

Define the position neighbouring graph G� and the
velocity neighbouring graph D�
 as in Shi et al. (2006a)
and assume that G� and D�
 are always strongly
connected, where �* is a switching signal and is a
piecewise constant function �*(t): [0,þ1)! P*, P*
is a finite index set where the number of the indices is
equal to the number of the strongly connected graph
D�
 in the group. From Shi et al. (2006b), we obtain
that, if D�
 is strongly connected, then its Laplacian
matrix L�
 is irreducible and for each L�
 , there is only
one left eigenvector 	�
 ¼ ½	1, . . . , 	N�

T
�
 2 R

N such that
05 	i� 1 for all i2I , 	T�
L�
 ¼ 0, and

PN
i¼1 	i ¼ 1.

Then, we modify the control law ui to

ui ¼ �
X

j2N i

rxiV
ij|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

�i

�
X

j2N

i

	iwij v
i � vj

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�i

�hismi v
i � v0ðtÞ

� �
þ gimia0ðtÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

� i

þ kiv
i|{z}

�i

,

where N



i , f j j wij 4 0g. By a similar analysis, we get

_eJ � � 1

2
co eTv ��L� þ LT

��� þ 2H�

� �
	 In


 �
ev

� �
,

where �� ¼ diagð	1, . . . , 	NÞ� 2 R
N�N, where � is a

switching signal and is a piecewise constant function
�ðtÞ : ½0, þ1Þ ! P, P is a finite index set where
the number of the indices is equal to the number of
the elements of set fðx, y, zÞ j 8x 2 P, 8y 2 P
, 8z 2 bPg.
It is easy to see that ��L� þ LT

��� is symmetric and
has the properties that each row sum is equal to 0, the
diagonal entries are positive, and all the other
entries are non-positive. The rest analysis is similar to
Theorem 2, and thus is omitted.

3.1.2 The motion of the CoM

In what follows, we will analyse the motion of system
(5) in the case where his ¼ h0 for all i2I , where h04 0
is a constant. This means that the intensities of
influence of the external signal on all agents are
equal. Hence, the control law in (4) has the following
form:

ui ¼ �
X

j2N i

rxiV
ij|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

�i

�
X

j2N i

wij v
i � vj

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�i

�h0mi v
i � v0ðtÞ

� �
þmia0ðtÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

� i

þ kiv
i|{z}

�i

: ð8Þ

Certainly, in this case, we also have the conclusions in
Theorems 1 and 2. Here we will choose another
moving reference frame to study the flocking problem.

The position vector of the CoM in system (5) is
defined as

x
 ¼

XN

i¼1
mix

iXN

i¼1
mi

:

Thus, the velocity vector of the CoM is

v
 ¼

XN

i¼1
miv

iXN

i¼1
mi

:

On using control law (8) and by the symmetry of W�

and the symmetry of function Vij with respect to xij,
we get

_v
 ¼ �h0v

 þ h0v

0ðtÞ þ a0ðtÞ: ð9Þ

By solving (9), we get

v
ðtÞ ¼ v0ðtÞ þ v
ðt0Þ � v0ðt0Þ
� �

e�h0ðt�t0Þ:

Thus, it follows that, if v*(t0)¼ v0(t0), then the velocity
of the CoM equals v0(t) for all time; if v*(t0) 6¼ v0(t0),
then the velocity of the CoM exponentially converges
to the desired velocity v0(t) with a time constant of h0 s.
Moreover, since _x
 ¼ v
, we have

x
ðtÞ ¼ x
ðt0Þ þ

Z t

t0

v0ð�Þd�

þ
v
ðt0Þ � v0ðt0Þ

h0
1� e�h0ðt�t0Þ

 �

:

We define the error vectors:

e
p ¼ x
 �

Z t

t0

v0ð�Þd� and e
v ¼ v
 � v0ðtÞ:

Then e
p represents the position difference vector
between the CoM and the virtual leader, whereas e
v
represents the velocity difference vector between them.
By the calculation above, it is easy to see that

lim
t!þ1

e
p ¼ x
ðt0Þ þ
v
ðt0Þ � v0ðt0Þ

h0
:

Thus, it follows that, if v*(t0)¼ v0(t0), then the position
difference between the CoM and the virtual leader
equals x*(t0) for all time; if v*(t0) 6¼ v0(t0), then the
difference exponentially approaches the constant
vector x
ðt0Þ þ ðv


ðt0Þ � v0ðt0ÞÞh0 with a time constant
of h0 s. Therefore, from the analysis above, we have the
following theorem.

Theorem 3: Taking the control law in (8), if the initial
velocity of the CoM is equal to the desired initial
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velocity, then the velocity of the CoM equals the desired

velocity for all time and the position difference between

the CoM and the virtual leader always equals x*(t0);

otherwise the velocity of the CoM will exponentially

converge to the desired velocity with a time constant of

h0 s and the position difference between the CoM and the

virtual leader will exponentially approach the constant

vector x
ðt0Þ þ ½ðv

ðt0Þ � v0ðt0ÞÞ=h0�.

In this case, we can also choose the moving reference

frame proposed in Olfati-Saber (2006) to analyse the

stability of system, and take the position of the CoM

of the group as the origin (called ‘the second moving

reference frame’). We define the error vectors

"ip ¼ xi � x
 and "iv ¼ vi � v
:

Then "iv represents the velocity difference vector

between agent i and the CoM. It is easy to see that
_"ip ¼ "

i
v and _"iv ¼ _vi � _v
: Hence, the error dynamics is

given by

_"ip ¼ "
i
v,

mi _"
i
v 2

a:e: K ui � kiv
i �mi _v




 �

, i ¼ 1, . . . ,N:

)
ð10Þ

By the definition of Vij, it follows that VijðkxijkÞ ¼

Vijðk"ijpkÞ,V
ij
, where "ijp ¼ "

i
p � "

j
p and hence V

i
¼ Vi

and r"ipV
ij
¼ rxiV

ij. Thus the control input ui for agent

i in the error system (10) has the following form:

ui ¼ �
X

j2N i

r"ipV
ij|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

�i

�
X

j2N i

wij "
i
v � "

j
v

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�i

�h0mi"
i
v � h0mie



v þmia0ðtÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

� i

þ kiv
i|{z}

�i

:

We consider the error system (10) and choose the

following Lyapunov function:

J ¼
1

2

XN
i¼1

V
i
þmi"

iT
v "

i
v

� 

: ð11Þ

By a similar calculation, we get
_eJ � �cof"Tv�

½ðL� þH0Þ 	 In�"vg, where "v ¼ ð"
1T
v , . . . , "NT

v Þ
T and

H0¼ diag(h0m1, . . . , h0mN)2R
N�N. Using the analysis

method in Theorem 2, we obtain that the velocities

of all agents asymptotically approach the velocity of

the CoM, avoidance of collisions between the agents

is ensured, and the group final configuration mini-

mises all agent potentials. Furthermore, from

Theorem 3, we conclude that the velocities of all

agents in group (5) asymptotically approach the

desired velocity.

Remark 4: One issue to be mentioned here is that,

when the intensities of influence of the external signal

on the motions of all agents are not equal, it is difficult

to estimate the motion of the CoM and analyse the

stability properties of system (5) under the second

moving reference frame.

3.2 Flocking control: group motion with common

but unknown velocity

In this case, we assume that all agents know the desired

velocity v0(t), but none of them know the acceleration

a0(t). Moreover, we still assume that the coefficients

his ¼ h0 4 0 and gi¼ 0 for all i2I . Thus the control

law acting on agent i is

ui ¼ �
X

j2N i

rxiV
ij|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

�i

�
X

j2N i

wij v
i � vj

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�i

�h0mi v
i � v0ðtÞ

� �|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
� i

þ kiv
i|{z}

�i

, ð12Þ

where wij, v
0(t), and h0 are defined as before. In what

follows, we will show that all agents cannot move

ahead at the desired velocity, but in this case, the weak

flocking motion of the agent group can be achieved.

Theorem 4: Taking the control law in (12), all

agent velocities in the group described in (5) become

asymptotically the same, avoidance of collisions between

the agents is ensured, and the group final configuration

minimises all agent potentials.

This theorem is true after Theorem 5 is proved. First,

on using control law (12), we get

_v
 ¼ �h0v

 þ h0v

0ðtÞ: ð13Þ

We consider the error dynamics (10). The control

input ui for agent i in the error system has the

following form:

ui ¼ �
X

j2N i

r"ipV
ij|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

�i

�
X

j2N i

wij "
i
v � "

j
v

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�i

�h0mi"
i
v � h0mie



v|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

� i

þ kiv
i|{z}

�i

: ð14Þ

Theorem 5: Taking the control law in (14), all agent

velocities in the error system (10) asymptotically

approach zero, avoidance of collisions between the

agents is ensured, and the group final configuration

minimises all agent potentials.

Choosing the Lyapunov function J defined as in (11)

and calculating the derivative of J along the solution of

the error system (10), we have
_J 2a:e:

_eJ � �cof"Tv ½ðL� þH0Þ 	 In�"vg: Following the
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analysis method in Theorem 2, we can obtain the proof

of Theorem 5. Here we omit the detailed proof.
Theorem 5 implies that all agent velocities in

group (5) asymptotically approach the velocity of the

CoM by using control law (12), but in what follows,

we will show that in this case the final velocity

of the group may not asymptotically approach the

desired velocity. In fact, for some cases, all agents

can track the external signal, but for others, they

cannot. We will present two simple examples, which

is enough to illustrate the problem. By solving (13),

we have

v
ðtÞ ¼ v
ðt0Þe
�h0ðt�t0Þ þ h0

Z t

t0

e�h0ðt��Þv0ð�Þd�,

and moreover, we obtain that

x
ðtÞ ¼ x
ðt0Þ þ
v
ðt0Þ

h0
1� e�h0ðt�t0Þ

 �

þ h0

Z t

t0

Z s

t0

e�h0ðs��Þv0ð�Þd� ds:

Example 1: Suppose the desired velocity v0(t) is a

constant vector v0, then we get

v
ðtÞ ¼ v0 þ v
ðt0Þ � v0ð Þe�h0ðt�t0Þ:

It is obvious that the velocity of the CoM equals the

desired velocity for all time or it will exponentially

converge to it with a time constant of h0 s.

Furthermore, by Theorem 5, we obtain that the

velocities of all agents asymptotically approach the

desired velocity. Moreover, we have

x
ðtÞ ¼ x
ðt0Þ þ v0ðt� t0Þ þ
v
ðt0Þ � v0

h0
1� e�h0ðt�t0Þ

 �

,

hence,

lim
t!þ1

e
p ¼ x
ðt0Þ þ
v
ðt0Þ � v0

h0
:

This implies that the position difference between the

CoM and the virtual leader will asymptotically

approach a constant vector. By the analysis above,

we know that, when the desired velocity is a constant

vector, the desired stable flocking motion can be

obtained by using control law (12). More information

can be found in Shi et al. (2005) and Shi et al.

(2006a).

Example 2: Suppose n¼ 1 and v0(t)¼ �t, where � is

a positive constant, then we get

v
ðtÞ ¼ �tþ ðv
ðt0Þ � �t0Þe
�h0ðt�t0Þ �

�

h0
1� e�h0ðt�t0Þ

 �

:

It is easy to see that limt!þ1 e
v ¼ �ð�=h0Þ. Moreover,

we have

x
ðtÞ ¼ x
ðt0Þ þ
�

2
t2 � t20
� �

�
�

h0
ðt� t0Þ

þ
v
ðt0Þ � �t0

h0
þ
�

h20

� �
1� e�h0ðt�t0Þ

 �

,

thus limt!þ1 e
p ¼ �1: This implies that the velocity

of the CoM cannot asymptotically approach the

desired velocity, i.e., the CoM cannot track the

external signal. Hence, in this case, the desired stable

flocking motion cannot be obtained by using the

control law in (12).

In what follows, we will demonstrate that in this case

the strong flocking motion still may not be achieved

even when the position information of the virtual

leader is considered in the design of the control law.

The initial position of the virtual leader is still chosen

as the origin, then its position vector is

x0ðtÞ ¼
R t
t0
v0ð�Þd�. We modify the control law ui in

(12) to

ui ¼ �
X

j2N i

rxiV
ij|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

�i

�
X

j2N i

wij v
i � vj

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�i

�h0mi v
i � v0ðtÞ

� �
� r0mi x

i � x0ðtÞ
� �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

� i

þ kiv
i|{z}

�i

, ð15Þ

where r04 0 is a constant. By a similar calculation,

we get

_v
 ¼ �h0v

 þ h0v

0ðtÞ � r0x

 þ r0x

0ðtÞ:

We consider the error system (10) and choose the

following Lyapunov function:

J ¼
1

2

XN
i¼1

V
i
þmi"

iT
v "

i
v þ r0mi"

iT
p "

i
p

� 

:

Then we have
_eJ � �cof"Tv ½ðL� þH0Þ 	 In�"vg. The rest

of the analysis is similar, and thus is omitted. Hence,

on using the control law in (15), the velocities of all

agents in group (5) still asymptotically approach the

velocity of the CoM.
Next, we analyse the motion of the CoM. By the

calculation above, we have

_x


_v


� 	
¼

0 In

�r0In �h0In

� 	
x


v


� 	
þ

0

h0v
0 þ r0x

0

� 	
,

ð16Þ

where v0, v0(t) and x0, x0(t). Let

A ¼
0 In

�r0In �h0In

� 	
¼

0 1

�r0 �h0

� 	
	 In:
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In the following, we will present an example to

illustrate the fact that the velocity of the CoM may

not asymptotically approach the desired value v0(t) by

using control law (15).

Example 3: Suppose t0¼ 0, n¼ 1, and v0ðtÞ ¼ e�h0t,

then x0ðtÞ ¼ ð1=�h0Þðe
�h0t � 1Þ, where � is a positive

constant. Thus the eigenvalues of matrix A is


1 ¼
�h0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h20 � 4r0

q
2

and 
2 ¼
�h0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h20 � 4r0

q
2

,

and they all are negative or have the negative real

parts.

(i) If h20 � 4r0 6¼ 0, then 
1 6¼ 
2 and the eigenvectors

associated with them are (1, 
1)
T and (1, 
2)

T,

respectively. Let P ¼ ½ 1 1

1 
2

�, then

P�1 ¼ 1=ð
2 � 
1Þ½

2 �1
�
1 1 �: Thus A¼Pdiag

(
1, 
2)P
�1. By solving (16), we obtain

x


v


" #
¼

�h20 þ r0

�h0½ð�2 þ �Þh20 þ r0�
e�h0t �

1

�h0
þ ð
Þ1

�h20 þ r0

ð�2 þ �Þh20 þ r0
e�h0t þ ð
Þ2

266664
377775,

where limt!þ1(
)1¼ 0 and limt!þ1(
)2¼ 0.

Hence, we get

lim
t!þ1

e
v ¼ lim
t!þ1

��2h20
ð�2 þ �Þh20 þ r0

e�h0t þ ð
Þ2

� 	
¼ �1,

and

lim
t!þ1

e
p ¼ lim
t!þ1

��h0
ð�2 þ �Þh20 þ r0

e�h0t þ ð
Þ1

� 	
¼ �1:

(ii) If h20 � 4r0 ¼ 0, then 
1 ¼ 
2 ¼ �ðh0=2Þ and the

eigenvectors associated with them are (1, 
1)
T

and (1, 1þ 
1)
T. Let

P ¼
1 1


1 1þ 
1

" #
and J0 ¼


1 1

0 
1

" #
,

then

P�1 ¼
1þ 
1 �1

�
1 1

� 	
and A ¼ PJ0P

�1:

By solving (16), we have

x


v


" #
¼

4�þ 1

�h0ð2�þ 1Þ2
e�h0t �

1

�h0
þ ð
Þ3

4�þ 1

ð2�þ 1Þ2
e�h0t þ ð
Þ4

26664
37775,

where limt!þ1(
)3¼ 0 and limt!þ1(
)4¼ 0.

Hence, we get

lim
t!þ1

e
v ¼ lim
t!þ1

�4�2

ð2�þ 1Þ2
e�h0t þ ð
Þ4

� 	
¼ �1,

and

lim
t!þ1

e
p ¼ lim
t!þ1

�4�

h0ð2�þ 1Þ2
e�h0t þ ð
Þ3

� 	
¼ �1:

From the analysis above, we conclude that the CoM

cannot track the virtual leader and thus the

strong flocking cannot be achieved by using the

control law in (15).

Remark 5: Note that, when none of the agents know

the acceleration a0(t), it is difficult to analyse the

stability properties of system (5) under the first moving

reference frame.
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Figure 2. The desired velocity curves.
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Figure 3. The initial state of the agent group.
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Remark 6: It should be mentioned here that, in the

case where some agents know the acceleration a0(t) but
others do not, the flocking motion cannot be achieved.

This will be demonstrated by the simulations in the
next section.

4. Numerical simulations

In this section, we will present some numerical

simulations for system (5) in order to illustrate
the theoretical results obtained in the previous sections.

These simulations are performed with ten agents,

labelled with circles, moving in the plane, whose initial
positions, velocities and neighbouring relations are set

randomly, but which satisfy: (1) all initial positions are
set within a circle of radius of R*¼ 10m centred at the

origin; (2) all initial velocities are set with arbitrary
directions and magnitudes within the range of [0, 4]

m/s; and (3) the initial neighbouring graph is
connected. All agents have different masses and they

are set randomly in the range of (0, 1] kg. Suppose the
desired velocity v0(t)¼ [sin(t), cos(t)]T and the initial

time t0¼ 0 s. We run the simulations for 100 s and
choose suitable coordinate axes to show our simulation
results.

Figure 2 depicts the curves of the desired velocity

along x-axis and y-axis. Figures 4–12 show the

simulation results for the same group, and the group

has the same initial state shown in Figure 3 where the

solid lines represent the neighbouring relations

between agents and the dotted arrows represent the

initial velocities of all agents. However, different

control laws are taken in the form of (4) (in Figures

4, 5, 6, 10 and 11), (12) (in Figure 7), or (15) (in

Figure 8) with the explicit potential function (3), where

a¼ b¼ 0.05. The agent’s sensing range is chosen as

R¼ 4m. In Figures 4–6 and 10–11, his ¼ hi or his ¼ 0

where hi is generated randomly such that 05 hi5 1,

8i2I0¼ {1, . . . , 10}, and for each i2I0, hi may be

different in different simulations. Take h0¼ r0¼ 1 in

Figures 7 and 8. The interaction coefficient wij equals

cij if agent j is a neighbour of agent i and is 0 otherwise,

where the coefficient cij is generated randomly such

that 05 cij¼ cji5 1 and cii¼ 0 for all i, j¼ 1, . . . , 10.
Figures 4–6 present the simulation results in the

case where all agents know the desired velocity and the

acceleration, and the coefficients hi, i¼ 1, . . . , 10, are

not equal to each other. In Figure 4, the coefficient his
equals hi for some i2I0 in control law (4), whereas

in Figure 5, the coefficient his equals hi for all i2I0.
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Figure 4. (a) and (b) depict the curves of the velocity errors between the agents and the desired velocity along x-axis and y-axis,
respectively, and (c) plots the velocity error between the CoM and the desired velocity. (d) presents the final group configuration
and all agents’ velocities at t¼ 100 s. (Here his ¼ hi for some i2I0 and gi¼ 1 for all i2I0.)
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Figure 6. (a) and (b) depict the curves of the velocity errors between the agents and the desired velocity along x-axis and y-axis,
respectively, and (c) plots the velocity error between the CoM and the desired velocity. (d) presents the final group configuration
and all agents’ velocities at t¼ 100 s. (Here his ¼ hi and gi¼ 1 for all i2I0.)
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Figure 5. (a) and (b) depict the curves of the velocity errors between the agents and the desired velocity along x-axis and y-axis,
respectively, and (c) plots the velocity error between the CoM and the desired velocity. (d) presents the final group configuration
and all agents’ velocities at t¼ 100 s. (Here his ¼ hi and gi¼ 1 for all i2I0.)
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Figure 8. (a) and (b) depict the curves of the velocity errors between the agents and the desired velocity along x-axis and y-axis,
respectively, and (c) plots the velocity error between the CoM and the desired velocity. (d) presents the final group configuration
and all agents’ velocities at t¼ 100 s. (Here h0¼ r0¼ 1 and gi¼ 0 for all i2I0.)
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Figure 7. (a) and (b) depict the curves of the velocity errors between the agents and the desired velocity along x-axis and y-axis,
respectively, and (c) plots the velocity error between the CoM and the desired velocity. (d) presents the final group configuration
and all agents’ velocities at t¼ 100 s. (Here h0¼ 1 and gi¼ 0 for all i2I0.)
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Figure 10. (a) and (b) depict the curves of the velocity errors between the agents and the desired velocity along x-axis and y-axis,
respectively, and (c) plots the velocity error between the CoM and the desired velocity. (d) presents the group configuration and
all agents’ velocities at t¼ 100 s. (Here his ¼ hi for all i2I0 and gi¼ 1 for some i2I0.)
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Figure 9. (a)–(b) and (c)–(d) depict the curves of the velocity errors between the agents and the CoM along x-axis and y-axis in
the simulations shown in Figures 7 and 8, respectively.
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Figure 12. (a)–(b) and (c)–(d) depict the curves of the velocity errors between the agents and the CoM along x-axis and y-axis in
the simulations shown in Figures 10 and 11, respectively.
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Figure 11. (a) and (b) depict the curves of the velocity errors between the agents and the desired velocity along x-axis and y-axis,
respectively, and (c) plots the velocity error between the CoM and the desired velocity. (d) presents the group configuration and
all agents’ velocities at t¼ 100 s. (Here his ¼ hi for all i2I0 and gi¼ 1 for some i2I0.)
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These results explicitly demonstrate that the desired
strong flocking motion can be obtained though the
neighbouring graph varies with time. Moreover, when
the coefficient his equals hi for all i2I0 in the control
law (4), all agents can still move at the desired
velocity eventually though the neighbouring graph is
not always connected in the course of motion, as
shown in Figure 6. Figures 7 and 8 show the
simulation results in the case where all agents know
the desired velocity but none of them know the
acceleration. It is easy to see that the strong flocking
motion cannot be achieved by using the control laws
in (12) and (15). Hence, it is difficult for all agents to
track a variable velocity v0(t) in the case where they
do not know its acceleration a0(t). Figure 9 depicts
the curves of the velocity errors between the agents
and the CoM along x-axis and y-axis in the
simulations shown in Figures 7 and 8, respectively,
and from this, it is easy to see that the weak flocking
motion can be obtained and the velocities of all
agents converge to the velocity of the CoM. For the
case where not all agents know the acceleration, we
also perform some numerical simulations. Figures 10–
12 consider the case where all agents know the desired
velocity v0(t) but only some of them know the
acceleration a0(t). The simulations show that the
flocking motion cannot be achieved. This agrees with
the condition on the availability of the acceleration of
the virtual leader to each agent in the group as
required in Theorems 1 and 2.

5. Conclusions

This paper studied the flocking problem of a group of
agents moving in an n-dimensional Euclidean space
with a dynamic virtual leader. To solve the problem,
we proposed a set of switching control laws, and the
control law acting on each agent relies on the state
information of its neighbours and the external signal.
We proved that, in the case where the acceleration of
the virtual leader is known, all agents can follow the
virtual leader, freedom from collisions between the
agents is ensured, the final tight formation minimises
all agent potentials, and moreover, the velocity of the
CoM equals the desired velocity for all time or it will
exponentially converge to the desired velocity. In the
case where the acceleration is unknown, the velocities
of all agents asymptotically approach the velocity of
the CoM; however, in this case, the final velocity of the
group may not be equal to the desired value.
Numerical simulation agrees very well with the
theoretical analysis.

In order to make the results more clear, we present
Table 1 which includes all the cases considered in the
paper.
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Table 1. The main results of this paper.

Conditions Conclusions

Flocking
type

Acceleration
(a0(t))

Desired
velocity
(v0(t))

Desired
position
(x0(t))

Neighbouring
graph (G�) Theorem

Simulation
result Example

Strong gi¼ 1, 9k2I s.t. — Connected 1–2 Figure 4 —
flocking 8i2I hks ¼ hk
(SF) in Equation (4)
(x 3.1) his ¼ hi, — Connected 1–2 Figure 5 —

8i2I
in Equation (4) Disconnected No Figure 6

proof
Weak gi¼ 0, his ¼ h0, — Connected 4–5 Figure 7 1(SF);
flocking 8i2I 8i2I in 2(no SF)
(WF) Equation (12)/(15) r04 0 in Connected Brief Figure 8 3(no SF)
(x 3.2) Equation (15) proof
No flocking gi¼ 1 for his ¼ hi, — Connected No Figure 10 —
(x 4) some i2I ; 8i2I proof

gi¼ 0 in Equation (4) Disconnected Figure 11
for others

Note: — represents the content which is obvious and not given in detail in this paper.
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