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Artificial-life research was founded in the mid-1980s. It promotes the idea of the bottom-up
research approach, where only the basic units of a situation and their local interaction are
modelled, and then the system is left to evolve. However, the notable progress of the processing
power of personal computers, evident in the last two decades, has had little influence on the
ways the basic units (artificial animals or animats) are constructed. This impacts largely on the
applicability of the methods in other research fields. Our field of choice is the modelling of bird
flocks. This area was at its peak in the late 1980s when Craig W. Reynolds presented the first
and most influential model – the boids. In spite of his many following works no formal
definition has ever been presented. This might be the reason why a second generation of
flocking models is still awaited. In this article we make a step forward, all in view of allowing
for the development of the second-generation models. We present an artificial animal
construction framework that has been obtained as a generalization of the existing bird flocking
models, but is not limited to them. The article thus presents a formal definition of the
framework and gives an example of its use. In the latter the framework is employed to present a
formalization of Reynolds’s boids.
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1. Introduction

Imagine a crowded street at rush hour. What makes us choose the next step when we
are moving through it? Why do we decide to change sides instead of continuing in the
same direction? Why do we increase our pace or slow down at the sight of a steaming
croissant displayed in the window of a corner coffee shop? Our everyday life is full of
such seemingly simple and yet complex decisions. We can admit that the reasons which
drive our decisions are intriguing but also very difficult to simulate. It is no wonder that
a substantial number of researchers have tackled this mystery. In most cases the
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authors are dealing with the simulation of animal behaviour. Such artificial animals are
usually called animats – a term first introduced by Stewart W. Wilson [1].
One of the researchers who has worked on the construction of artificial animals is

Craig W. Reynolds [2 – 5]. His primary interest was birds, more specifically a believable
simulation of bird flocking. In [2] he defined a set of three steering behaviours,
presented in table 1, that allow for a credible simulation of the flocking behaviour of
birds. On the basis of these three forces every artificial bird chooses its new flight
velocity (i.e. heading and speed) that allows it to be in the flock. Reynolds called his
artificial bird a boid. Observing the behaviour of a group of boids moving through an
environment, a strong resemblance to the characteristic behaviour of a flock of birds
can be sensed. In addition, Reynolds states that his algorithm applies equally well to
the simulation of herds and schools [2].
Reynolds translated the three drives to a set of geometrical equations, where he

interpreted the expression ‘nearby flockmates’ as the boid’s immediate surroundings.
Actually, he found that a boid does not require full knowledge about the position and
velocity of every boid in the flock, but only a small subset. The expression ‘nearby
flockmates’, used in the descriptions of the steering behaviours, thus addresses the boid’s
awareness of another boid and is based on the distance and direction of the offset vector
between them. In other words: the boid has a localized perception of the world with a
certain perception distance and field of view and can be visualized as a perception
volume shaped like a sphere with a cone removed from the back. It is important to note
that, when the boids are in a flock, the individual perception volumes overlap and each
individual boid will probably end up in a number of perception volumes.
The collision avoidance and velocity matching steering behaviours are complemen-

tary and together represent one motivation – the desire to avoid collisions within the
flock. Reynolds addresses them as static (collision avoidance) and dynamic (velocity
matching) [2]. The primary reason for doing so is his implementation of the two
steering behaviours. He has based collision avoidance purely on the relative positions
of the observed boid’s flockmates and ignores their velocity. Conversely he has based
velocity matching purely on velocity but ignores the relative position. If the boids are
doing a good job at velocity matching, it is unlikely that a collision will occur in the
near future, since all of them are flying with the same heading and speed. Therefore
velocity matching is in fact a predictive version of collision avoidance. Reynolds
explains that collision avoidance serves to establish the minimum required separation
distance; velocity matching tends to maintain it [2]. On the other hand, the flock
centring steering behaviour is the boid’s urge to be a member of the flock. It is
manifested by the boid’s tendency to fly into the centre of the flock. Since the boid’s
perception is localized, this means the centre of its nearby flockmates. This tendency is
the result of the boid’s motivation to be evenly surrounded by its flockmates. Reynolds
also states that flock centring allows for the bifurcation of simulated flocks [2]. When
moving through an environment with obstacles, a real flock bifurcates and later rejoins
in order to avoid possible collisions with an obstacle. The latter is one of the most
admired aspects of natural flocks.

Table 1. Reynolds’s steering behaviours.

Steering behaviour Description

Collision avoidance Avoid collision with nearby flockmates
Velocity matching Attempt to match velocity with nearby flockmates
Flock centring Attempt to stay close to nearby flockmates
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Usually the knowledge about the behaviour of birds or animals in general is
available only in the form of a linguistic description, which was the case even for
Reynolds’s boids. A transition from a linguistic description to a mathematical model is
thus required and in most cases it is far from being straightforward. There are research
fields, however, where exact knowledge about the behaviour of the studied phenomena
is a non-affordable luxury. This is why our future research focuses on the simplification
of this transition. We find the bottom-up approach as the right way to go, the one that
could be used from ethologists studying animal behaviour to researchers working in the
field of nanotechnology. Our leading hypothesis is that by simplifying the transition
from a linguistic description to a mathematical model, a larger number of researchers
would find out the remarkable possibilities of the bottom-up approach.

In the following article we present a reformulation of Wilson’s animat [1] that allows
the construction of artificial animals. To show its effectiveness, we use Reynolds’s
boid [2] as an example where we limit ourselves to dull environments, leaving the
exciting ones for future research. In section 2 we start by presenting the formal
definition of the artificial animal construction framework. We continue by presenting
our case study, where in section 3 we use the framework to present a formalizations of
Reynolds’s [2] model. In section 4, using Reynolds’s boids as an example, we show how
the behaviour of a group of animats could be analysed.

2. Modelling an artificial animal

Let us consider that we are modelling the behaviour of a living being – be it a plant, an
animal or a human. In the rest of this article we shall, for reasons of brevity, refer to all
simply by the name animal. According to Wilson [1], if we want to model the behaviour
of an animal with a satisfactory accuracy we need to abstract its basic characteristics:

(i) an animal exists in a sea of sensory signals, where at any moment only some
signals are significant, the rest are irrelevant;

(ii) the animal is capable of actions (e.g. movement) which tend to change these
signals;

(iii) certain signals (e.g. those attendant upon consumption of food), or the absence
of certain signals (e.g. absence of pain) have special status for it; and

(iv) the animal acts, both externally and through internal operations, so as to
approximately optimize the rate of occurrence of the special signals.

The animal’s sensory-motor situation is described in very general terms by
characteristics (i) and (ii). Characteristics (iii) and (iv) are assumptions which provide
a way of making the notion of ‘needs’ (or drives) and their satisfaction. These
characteristics suggest that an animal acts as an automaton and together they form the
basis of Wilson’s artificial animal named simply an animat [1].

The four characteristics represent one of the more widely adopted theories about the
behaviour of animals, where every action is the result of the perception of certain
signals existing in the environment and satisfaction of personal drives or goals
(figure 1). We shall therefore adopt Wilson’s idea and model our animat construction
framework with a finite state automaton. This section presents its formal definition.

For a better understanding of the underlying theory we first present the formal
definition of the Moore automaton [6] and then progress to the formal definition of the
animat.
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Definition 2.1. The Moore automaton is defined as a five-tuple hX, Q, Y, d, li, where X, Q

and Y are non-empty sets representing the input alphabet, the internal states and the output

alphabet respectively; d is a mapping called the transition function and l is a mapping called

the output function:

d : X�Q! Q; ð1Þ

l : Q! Y: ð2Þ

If T is a finite non-empty set of discrete time steps, then at a discrete time step t2T the

automaton is in a state q(t)2Q emitting the output l(q(t))2Y. If an input x(t)2X is

applied at this time step, then, in the next discrete time step tþ 1, the automaton assumes a

new state q(tþ 1) ¼ d(x(t), q(t)) and starts emitting a new output l(q(tþ 1)).

It soon becomes evident that modelling perception, drives and action selection with a
Moore automaton is far from being straightforward. We shall thus reformulate the
transition function d from Definition 2.1 into a three-stage scheme that takes into
account the adopted theory about animal behaviour (figure 1).
Let us assume that Moore automata are used to represent inanimate and/or

animate objects existing in the universe. In other words, we are assuming that the
output of a participating automaton represents data about an animal (e.g. position,
sex, emotion, etc.) that can be perceived (e.g. in real life through physical appearance,
smell, pose, etc.) by an outside observer. Any participating automaton thus, if it is to
represent an animal, needs to be able to perceive this data. Therefore all of them use the
same input alphabet; the Cartesian product of the output alphabets of the participating
automata.
If A1, . . . ,An are used to denote the participating automata, then, at a discrete time

step t2T, the state of the universe is given by the n-tuple u(t)¼hl1(t), . . . ,ln(t)i, where
for all i¼ 1, . . . ,n li(t) denotes the output of automaton Ai at time step t. In addition,

Figure 1. The three stages of the adopted theory about the behaviour of animals.
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the input that is at time step t2T applied to all participating automata is x(t)¼ u(t),
and thus the input alphabet employed by all participating automata is X¼Y16� � �6
Yn, where Yi is the output alphabet of automaton Ai.

From the above discussion it can be concluded that the state of the universe is
actually defined by the perceivable data about the animate and/or inanimate objects
that exist in it. Perception can afterwords be thought of as a process of interpreting this
data and selecting just the relevant information from all of the sensory signals
(e.g. detect the locations of food sources in the vicinity). The latter can be treated as
characteristic (i) of Wilson’s animat [1]. In real life there exist multiple perception types
(e.g. sight, smell, etc.), where each of them selects only the information that is relevant
according to the specific characteristics of its type. Interpretation can be modelled as a
mapping from perceivable data to information, whereas selection as the construction of
an index set containing only the indexes of relevant perceivable data.

Let q2Q be the current state of the observed automaton and let its input be
x¼hl1, . . . ,lni, where li is the current output of automaton Ai. For all i¼ 1, . . . , n let the
set I

c
i represent information regarding characteristic c that can be obtained about

automaton Ai from li. Information regarding characteristic c (i.e. interpreted data),
obtained from the current state of the universe, can then be represented as
o 2 I

c
1 � � � � � I

c
n. Let Nn denote the set of all positive natural numbers less than or

equal to n. Then the set N 2 PðNnÞ represents the set of indexes of members of o that
are, according to the specific characteristic, relevant to the observed automaton. The
ordered pair hN, oi, where N 2 PðNnÞ and o 2 I

c
1 � � � � � I

c
n, thus represents

information regarding the characteristic c that was obtained from the current state
of the universe and is, according to this specific characteristic, relevant to the observed
automaton. For reasons of notational simplicity we shall denote the set
PðNnÞ � ðIc1 � � � � � I

c
nÞ simply as P

c.

Definition 2.2. Let x2X be the current state of the universe and p2P
c be the information

regarding characteristic c that was obtained from x and is, according to this characteristic,

relevant to the observed automaton. Then a perception function for characteristic c is a

mapping P : X6Q 7!P
c.

For simplicity, as well as to indicate the relation to cellular automata [7], we shall
address the image of a perception function with the name neighbourhood. A
neighbourhood represents only the relevant and characterized sensory signals. This
means that the perception function allows us to take into account that different animals
employ different strategies for sampling sensory data [8].

By following Wilson’s [1] interpretation of the personal goals of an animal
(animat characteristics (iii) and (iv)), it can be concluded that the animal’s drives are in
strong correlation of its internal state and the state of the universe. The animal’s
actions thus depend on the information obtained from the universe and its current
internal state.

Definition 2.3. Let there be k neighbourhoods that were obtained by means of k perception

functions and let P denote the set P
c16� � �6P

ck. Let a2A be an action that, with respect to

the neighbourhoods hp1, . . . ,pki 2P and q2Q, satisfies a specific drive. Then a drive function

is a mapping D : P6Q 7!A.

Since an animal usually has more than one drive, the resulting actions must be
combined so as to approximately optimize the satisfaction of all drives (animat
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characteristic (iv)). Not simply combined, the actions must be prioritized and, in case
of conflicts, also arbitrated. Moreover, their urgency must also be taken into account.

Definition 2.4. Let there be l actions that were obtained by means of l drive functions,

which satisfy l drives. Then an action selection function is a mapping S : A
l6Q!Q.

The animat can therefore be defined as an extended Moore automaton.

Definition 2.5. An animat A¼hX, Q, Y, d, l, P, D, Si is a special Moore automaton,

where P¼hP1, . . . ,Pki is a k-tuple of perception functions, D¼hD1, . . . ,Dli is an l-tuple of

drive functions, S is an action selection function and the transition function d is defined as:

dðx; qÞ ¼ Sðha1; . . . ; ali; qÞ ð3Þ

aj ¼ Djðhp1; . . . ; pki; qÞ; j ¼ 1; . . . ; l ð4Þ

pi ¼ Piðx; qÞ; i ¼ 1; . . . ; k: ð5Þ

Let us sum up: at a discrete time step t2T, an animat is input the current perceivable
state of the universe (i.e. an n-tuple containing the current outputs of the animats that
constitute the universe). The three stage scheme of the transition function d, given by
equations (3) – (5), imitates the adopted theory about the behaviour of animals
(figure 1). The first stage employs the perception functions Pi (i¼ 1, . . . ,k) to retrieve
from the current perceivable state of the universe only the information that is relevant
to the observed animat. The second stage employs the drive functions Dj (j¼ 1, . . . ,l) to
decide, based on the retrieved information, on the actions that will satisfy the observed
animat’s needs. The third stage employs the action selection function S to combine,
prioritize and arbitrate between the potentially conflicting actions and generate the
observed animat’s next discrete time step state q(tþ1).

3. Formalization of Reynolds’s boids

In the previous section we presented a formal definition of an artificial animal
construction framework. In this section we are going to show that a boid [2] is an
animat, and present its formal definition. Reynolds has based all of the boid’s
processing on geometrical expressions, but even though he has published numerous
works concerning the matter [2 – 5], no formal definitions have ever been given.
Recently, however, he made available the OpenSteer library,* which includes an
implementation of the boids. The assumptions employed in the formalization of the
model are based on this implementation.
Reynolds [2] models the boid as an object existing in a universe that is inhabited by

identical boids. In some of his studies [2 – 4] he did introduce environmental obstacles,
but for reasons of simplicity we concentrate on dull universes (i.e. no environmental
obstacles).

*OpenSteer Library. Available online at: opensteer.sourceforge.net (accessed 25 May 2006).
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Let us assume that a boid is an animat. We thus need to define the set of internal
states, the output alphabet, the perception functions, drive functions and the
corresponding action selection function. Let us begin with the set of internal states.
A boid moves through the universe with a certain velocity (i.e. heading and speed). This
means that the boid’s internal state consists of at least its position p2V, where V¼R

d,
(d¼ 2, 3) is a Euclidean vector space, and velocity v2V. The velocity vector v gives the
boid’s relative position changes per coordinate axis in the Cartesian coordinate system
and therefore codes the boid’s heading and speed. According to table 1, the boid has
three drives and each drive is based on the expression ‘nearby flockmates’. However, as
discussed in the introduction, this expression has different meanings, depending on the
drive. Based on Reynolds’s latest implementation of the model, the latter can be
interpreted as different perception volumes, defined respectively by a perception
distance and a field of view. Therefore we define the separation rs, alignment ra and
cohesion rc perception distance, as well as the separation fovs, alignment fova and
cohesion fovc field of view, which together define the corresponding perception
volumes. Additionally, the boid’s physics is governed by the so-called geometric flight
[2], which imposes the following constraints: a maximal achievable speed vM, which
represents a simple model of viscous speed damping (i.e. the inability to exceed a
certain speed even if constantly accelerating), and a maximal available force fM, which
takes into account the fact of modelling an animal with a finite amount of energy.
Furthermore, as Reynolds’s model is based on Newtonian forces, the boid also has a
mass m. For reasons of simplicity we shall assume that only the boid’s position p and
velocity v can change through time, while all other internal state parameters stay
constant. The latter is consistent with the original boid definition [2].

Definition 3.1. Let V¼R
d, (d¼ 2, 3) be a Euclidean vector space, then the boid’s internal

state q2Q is defined by (6), where p2V is its position, v2V is its velocity, r¼hrs, ra, rci are
the separation, alignment and cohesion perception distance, fov¼hfovs, fova, fovci are the

separation, alignment and cohesion field of view, m is its mass, vM is its maximal achievable

speed and fM is its maximal available force.

Q ¼ fq j q ¼ hp; v; r; fov;m; vM; fMig ð6Þ

In every discrete time step the boid changes its velocity in order to approximately
optimize a certain set of drives (i.e. the three steering behaviours presented in table 1).
The decision is based purely on its current state and the current state of the universe.
More precisely, the decision is based on the perceived locations and velocities of its
nearby flockmates. Therefore at any given time step a boid makes available only the
data about its position p and velocity v. In other words the boid’s output alphabet is
Y¼V6V and its output is defined as l(q)¼hp, vi.

As already said, a perception function interprets the state of the universe and selects
only relevant perceivable data. The perception model employed by Reynolds can be
visualized as a perception volume shaped like a sphere with a cone removed from the
back. The latter can be defined by means of a perception distance and field of view.
Since the state of the universe is represented by a collection of pairs hp, vi, locations
and velocities of the participating boids, the interpretation is simple and the set
representing information regarding the location and velocity of a boid is defined as
I¼Y. The three perception functions thus differ only in the sets that represent the
indexes of relevant information. In the case of the separation perception this set
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represents the indexes of the flockmates that must be avoided, in the case of the
alignment perception indexes of the flockmates that must be followed, and in the case
of the cohesion perception the flockmates that must be kept close to.
Let Bj and Bi be two boids and let qj and qi be their corresponding internal states. Let

li¼ l(qi)¼hpi, vii be the output of boid Bi and let Bj denote the observed boid. The
distance of boid Bi from the observed boid Bj is then defined as

Dðli; qjÞ ¼ pi � pj
�� ��; ð7Þ

and its angular offset is then defined as

jðli; qjÞ ¼ arccos
vj � ðpi � pjÞ
kvjkkpi � pjk

 !
: ð8Þ

Definition 3.2. Let x¼hl1, . . . ,lni be the state of the universe and I¼Y the set

representing information about a flockmate’s location and velocity. Let j be the index of

the observed boid. Then P
v ¼ PðNnÞ � I

n and the perception function Ps : X6Q 7!P
v

defined by equation (9) is the separation perception function (i.e. perception of nearby
flockmates that must be avoided), the perception function Pa : X6Q 7!P

v defined by
equation (10) is the alignment perception function (i.e. perception of nearby flockmates
with which to match velocity), and the perception function Pc : X6Q 7!P

v defined by
equation (11) is the cohesion perception function (i.e. perception of nearby flockmates
that must be kept close to).

Psðx; qÞ ¼ hNs; xi;
Ns ¼ fiji 2 Nn; i 6¼ j;Dðli; qjÞ � rs;jðli; qjÞ < fovsg ð9Þ

Paðx; qÞ ¼ hNa; xi;
Na ¼ fiji 2 Nn; i 6¼ j;Dðli; qjÞ � ra;jðli; qjÞ < fovag ð10Þ

Pcðx; qÞ ¼ hNs; xi;
Nc ¼ fiji 2 Nn; i 6¼ j;Dðli; qjÞ � rs;jðli; qjÞ < fovcg: ð11Þ

The boid’s behaviour is based on the three steering behaviours presented in table 1
(see [2,4] for detailed descriptions). Reynolds [2,4] modelled them using geometrical
calculations. Each steering behaviour thus produces a force that would induce a
change in velocity that satisfies the corresponding need (i.e. of avoiding collisions, of
matching velocity, and of being part of a flock). A drive function (Definition 2.3)
returns an action that will satisfy a specific need. In other words: if we define the set of
actions to be a Euclidean vector space and an action to be the required force, then we
can use Reynolds’s geometrical calculations to define the separation, alignment and
cohesion drive.
Separation represents the boid’s need of a personal space and is a mathematical

approximation of the collision avoidance steering behaviour (table 1). The main idea
behind it is that it keeps the boids free from collisions. Alignment represents the boid’s
wish to move with the same velocity as its flockmates. It is a mathematical
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approximation of the velocity matching steering behaviour (table 1). The main idea is
that when moving with the same velocity (i.e. with the same heading and with the same
speed), the boids will not collide with each other in the near future. Finally, cohesion
represents the boid’s wish to be a member of the flock. It is a mathematical
approximation of the flock centring steering behaviour (table 1). The main idea is that
every boid wants to be evenly surrounded by its flockmates. Thus if the boid senses
the presence of flockmates on just one of its sides it moves to that side. Indeed,
Pliny [9] was one of the first who noted that ‘it is a peculiarity of the starling kind that
they fly in flocks and wheel round in a sort of circular ball, all making towards the
centre of the flock’.

Let v2V be a vector. Then the normalized vector v (i.e. a vector in the same
direction as v, but with size 1) is defined as

v0 ¼ v

kvk : ð12Þ

Definition 3.3. Let there be three perception functions Ps, Pa and Pc (Definition 3.2) and

let ps, pa and pc be the corresponding neighbourhoods. Then ps¼hNs, oi, pa¼hNa, oi,
and pc¼hNc, oi, where o¼hl1, . . . ,lni and 8i¼ 1, . . . ,n li¼hpi, vii. Let P¼ (Pv)3 and let

p2P be p¼hps, pa, pci. Let the set of available actions be A¼V. Then the drive function

Ds : P6Q 7!A defined by equation (13) is the separation drive function, the drive function

Da : P6Q 7!A defined by equation (14) is the alignment drive function, and the drive

function Dc : P6Q 7!A defined by equation (15) is the cohesion drive function.

Dsðp; qÞ ¼
X
i2Ns

p� pi

kpi � pk2

" #0
ð13Þ

Daðp; qÞ ¼
1

jNaj
X
i2Na

vi

 !
� v

" #0
ð14Þ

Dcðp; qÞ ¼
1

Ncj j
X
i2Nc

pi

 !
� p

" #0
ð15Þ

The boid’s perception of the universe was defined by using perception functions
whereas its steering behaviours were defined by using drive functions. Each drive
function returns an action (i.e. a force) that would induce a velocity change that
satisfies a specific need (see table 1). To compute the action that would satisfy all of
the needs the resulting actions (forces) have to be combined. But, as in some cases
(e.g. two flocks joining) the latter can be contradictory; they must be prioritized and
also arbitrated. In his original study Reynolds [2] proposes combining them using a
special algorithm named ‘prioritized acceleration allocation’. In a later study,
however, he admits that in the course of several re-implementations of the model
over the years, a simpler linear combination has proved sufficient [4]. This approach
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is used even in his latest implementation of the OpenSteer Library and thus also the
approach employed by us.
Let v2V be a vector and let v2R

þ be its maximal size. Then the truncation of
vector v is defined as

bvev ¼ v iff kvk � v
vv0 iff kvk > v:

�
ð16Þ

Definition 3.4. Let there be three drive functions Ds, Da and Dc (Definition 3.3) and let as,

aa and ac be the corresponding actions. Then a2A
3 is a¼has, aa, aci. Let ws, wa and wc

represent the significance of action as, aa and ac respectively. Then the action selection

function Sws : A6Q 7!Q, defined by equation (17), is the weighted sum action selection

function.

Swsða; qÞ ¼ hp0; v0; r; fov;m; vM; fMi

v0 ¼ vþ bwsasþwaaaþwcacefM
m

j mvM
p0 ¼ pþ v0:

ð17Þ

By employing Definitions 3.1 – 3.4 Reynolds’s boid can be defined as a special
animat.

Definition 3.5. A boid B¼hX, Q, Y, d, l, P, D, Si is a special animat. The set of internal

states Q is defined by Definition 3.1, the output alphabet is Y¼V6V and the output

function is l(q)¼h p, vi. The input alphabet is X=Y
n, where n is the number of boids that

consist the universe. Finally the k-tuple of perception functions is P¼hPs, Pa, Pci
(Definition 3.2), the l-tuple of drive functions is D¼hDs, Da, Dci (Definition 3.3) and the

action selection function is S¼Sws (Definition 3.4).

4. Behaviour analysis

In the previous two sections we presented the formal definition of an artificial animal
construction framework and then employed it to present a formalization of a boid. The
latter is a computer model of a bird, developed by Reynolds in the late 1980s [2]. As
the model purports to simulate bird flocking behaviour, this section will focus to the
quality of the flocking behaviour of the formalized model. First a set of metrics, with
which one can measure and judge the flocking behaviour of a group of boids, will be
presented and then the latter will be used in a series of controlled experiments to
evaluate the flocking behaviour of boids. For reasons of (presentational) simplicity the
experiments will be constrained to a two-dimensional universe.
As Reynolds’s [2] main objective is to artificially simulate the characteristic

behaviour of a flock of birds, the main question that arises is, ‘What is a flock’? As
it turns out, Reynolds with this term refers to a group of objects that exhibit a general
class of polarized, non-colliding, aggregate motion, where the term polarization is from
zoology, meaning ‘alignment’ of animal groups [2]. However, from an ornithological
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point of view, a flock is a group of flying birds coordinated in one or more of the
following parameters of flight: turning, spacing, speed and heading of individual birds,
and time of takeoff and landing [10]. Neither definition, nevertheless, gives enough
information to allow for an algorithmic classification. Let us thus define our
interpretation of a flock (figure 2).

Let the universe consist of n boids and let us denote them as B1, . . . ,Bn. Let the
current perceivable state of the universe be u¼hl1, . . . ,lni, where li¼hpi, vii denotes
the current position and velocity of boid Bi, for all i¼ 1, . . . ,n. Let rI denote the
maximal distance between two boids that still allows for a direct influence between
them. Recalling from Definitions 3.1 and 3.3: a boid has three distinct perception
volumes, each defined through a perception distance and a field of view. Considering
only the perception distance, two boids can be in range to potentially end up in at least
one of each other’s perception volumes, however due to their orientation they are
actually not in any of them (e.g. see ‘leader’ in figure 2). To conclude: since rs, ra and rc
denote the separation, alignment and cohesion perception distances and since all
boids are created equal, then in the boid’s case the range of potential influence is
rI¼max(rs, ra, rc).

Thus, based on the current perceivable state of the universe u and the range of
potential influence rI, the set M�Y

n6Y
n, which represents the relation of potential

direct influence between boids can be computed:

M ¼ ði; jÞj i; j 2 Nn; j 6¼ i; kpj � pik � rI
� �

: ð18Þ

The relation of potential direct influence is in fact a set of ordered index pairs (i, j),
where boid Bj is close enough to be treated as relevant by at least one of the perception
functions of boid Bi. This means that by traversing this list we can find out which boids
potentially directly or indirectly influence one another.

Let b¼ b0 . . . bm, where bi2Nn, (i¼ 1, . . . ,m), denote a series of indexes. The set
representing the relation of potential direct or indirect influence is then

M
? ¼ fði; kÞj i; k 2 Nn; 9bðb0 ¼ i; bm ¼ k; ðbj�1; bjÞ 2M; 8j 2 NmÞg: ð19Þ

Let Gi denote the set of indexes of boids that directly or indirectly influence boid Bi.
Then Gi is defined as

Gi ¼ fj j j 2 Nn; ði; jÞ 2M
?g: ð20Þ

Let a straggler be a boid that does not and is not influenced by any other boid and let
a flock be a set of boids that potentially influence one another. Then the set of
stragglers is defined as

S ¼ fGi j i 2 Nn; jGij ¼ 0g; ð21Þ

and the set of flocks as

F ¼ fGi j i 2 Nn; jGij � 1g: ð22Þ

By definition a flock is thus a set of boids that have a potential direct or indirect
influence on one another. In ornithological studies of bird flocks, the leading role was
played by the search for evidence that would answer the question of existence or
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necessity of a flock leader. Indeed, many researchers assumed a leader’s existence and
presumed it directed the movement of the whole flock, however, efforts to identify the
flock’s leader have been so far unsuccessful [11 – 14]. In a simulation this question
becomes rather simple – at any time it is possible to determine a leading boid. Let a
leader be a boid that is a member of a flock but is not directly affected by any of its
flockmates (i.e. there is at least one flockmate that is in range for potential influence,
however it is not in any of its perception volumes). In other words: a leader is a boid
that is a member of a flock but all of its perception functions find all members of the
flock irrelevant. Nevertheless, as the leader is a member of a flock, it has a potential
influence on at least one of its flockmates. Let Bi be the observed boid and let the
state of the universe be u. Then the input of boid Bi is x¼ u. Let hNs, oi¼Ps(x, qi),
hNa, oi¼Pa(x, qi) and hNc, oi¼Pc(x, qi) and let Ni denote Ns[Na[Nc. Then boid Bi

is a leader if and only if jNij ¼ 0. The set of leader flocks is therefore defined as

FL ¼ fGjG 2 Fð9i 2 G; jNij ¼ 0Þg: ð23Þ

The behaviour of a group of boids must be estimated by comparing the resemblance
of their behaviour to that seen in natural flocks. The best choice is to turn to counting
the cumulative number of collisions between boids and observe the temporal
dependency of the number of stragglers and the number of flocks. Since in nature
collisions rarely occur, the metric of cumulative collisions is fairly important and the
lower it is, the better the flocking ability. However, as our definition of a flock does not
make any note on polarization and inter-individual coordination, one might end up
with a swarm and not a bird flock. Indeed, in nature they both have few if any
collisions, but the first is uncoordinated, while the second is highly coordinated. The
best option is thus to visually inspect the flock formation (see [10] for a discussion on
flock formations and flocks in general), as well as observe the temporal dependency of
the average nearest neighbour distance (NND) and the heading and speed standard

Figure 3. A series of time-equidistant frames from one of the experiments used for the estimation of flocking
ability of Reynolds’s boids [2]. The black triangles represent boids, with the apex indicating the heading. The
grey circle surrounding the boids represents a boundary and whenever a boid crosses it, it is forced to turn
and eventually return inside of it. The boids’ images were scaled up to aid print clarity and thus their apparent
overlapping does not necessary imply a collision.
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deviation in every flock. As a matter of fact, the latter are the metrics that are most
commonly employed by ornithologists [14 – 16]. Furthermore, when observing the
temporal dependency of the number of flocks one should always monitor the temporal
dependency of the proportion of leader flocks also.

4.1 Experiments

The flocking behaviour of the boids was evaluated by using a set of four experiments. To
help boids in forming flocks they were contained within a special boundary. A boid
crossing this boundary was forced to turn and eventually return inside of it, and thus the
confinement actually modelled a roosting area in real flocks. The universe consisted of
100 boids that had random initial positions and velocities. The initial distribution had on
average 18.5 stragglers, with a standard deviation of 4.51, and 21.5+ 5.26 flocks,
61.9+ 5.01% of which had leaders. After 3000 simulations the boids averaged 17+ 2.16
collisions. Figure 3 shows a series of time-equidistant frames from one of the
experiments. It was noticed that collisions were mostly head-on collision caused by the
merging of flocks and occurred randomly throughout the entire simulation. In addition,
in many cases, the merging caused the boids to pile-up and later to regain speed very
slowly (see frames 1286– 1714 and 2143– 3000 in figure 3). A chart representing the
temporal dynamics of the number of flocks and the temporal dynamics of the average
speed is presented in Figure 4. The graphs suggest that boids do form flocks. In addition
the decrease in speed caused by pile-ups is very well defined (see, for example, frames
1286– 1714). After 3000 steps the average final number of stragglers was 2.75+ 1.5, the
average final number of flocks was 4+ 2.16 and the average proportion of leader flocks
observed throughout the simulations was 75.44+ 15.85%.

To estimate the influence of parameter changes on the boids’ behaviour a series of
eight experiments was performed. In this series, for the three weights ws, wa and wc

(Definition 3.4), all possible combinations of 10% and 90% of the original values
employed by Reynolds have been explored. The influence was observed on the basis of
one of the experiments from the first set-up. The results are summed up in table 2. It
can be noticed that the separation and alignment drives have the highest impact on the
number of collisions. Additionally, it can be noticed that the alignment drive has
the highest influence on flock formation, however it also reduces the overall speed of

Table 2. A table summarizing the influence of parameter changes on the overall behaviour of boids. The
proportion of leader flocks, average nearest neighbour distance and average speed are presented in the form

of the overall average and standard deviation values computed over the whole 3000 simulation steps.

Experiment Collisions Stragglers Flocks

Proportion
of leader

flocks (avg)
Average

NND (avg)
Average

speed (avg)

Initial 21 21 38.1 5.42 51
(0.1, 0.1, 0.1) 153 14 17 36+ 14 4.62+ 0.28 49.81+ 1.73
(0.1, 0.1, 0.9) 302 13 19 31+ 11 4.65+ 0.28 94.46+ 6.20
(0.1, 0.9, 0.1) 59 6 4 49+ 18 3.30+ 0.78 29.24+ 4.76
(0.1, 0.9, 0.9) 778 9 5 42+ 15 3.05+ 0.56 81.32+ 8.16
(0.9, 0.1, 0.1) 0 17 16 25+ 11 5.92+ 0.16 39.01+ 4.24
(0.9, 0.1, 0.9) 156 9 15 26+ 11 5.05+ 0.23 89.39+ 6.02
(0.9, 0.9, 0.1) 0 8 7 24+ 14 5.62+ 0.20 34.48+ 3.78
(0.9, 0.9, 0.9) 26 2 5 23+ 17 4.36+ 0.37 70.68+ 6.39
(1.0, 1.0, 1.0) 17 2 4 23+ 15 4.36+ 0.40 70.55+ 7.93
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the flocks and nearby neighbour distance. Indeed it is surprising that, if we give the
highest priority to low collision count, followed by the lowest final number of flocks
and stragglers, the best behaviour is obtained when both separation and alignment
drive are at 90% and only cohesion drive is at 10% of the original value.

5. Conclusion

We do not question the flocking behaviour of Reynolds’s boids. We also understand that
his primary interest was a flocking behaviour that is visually credible enough to be used in
motion pictures. On the other hand, we find the artificial life approach as the right way to
go when studying phenomena that are difficult to study or even cannot be studied by
traditional methods. With this we address ornithologists and the numerous difficulties
they face when trying to acquire and study four-dimensional data to answer the questions
‘why’ and ‘how’ birds flock [9]. As our metrics show, Reynolds’s model is not so perfect
from this point of view. In addition, his approach is far from being straightforward, which
hinders the emergence of the second generation of bird flocking models. Indeed, he
employs geometrical computation to approximate the steering behaviours. This
mathematical complexity is a crucial setback for a larger number of interdisciplinary
researchers to be interested in boids. With a more straightforward approach they could,
for example, be used to model individual animals living in a predator – prey relation and
as such represent an alternative bottom-up approach to the study of temporal
development of the population densities [17]. It is likely that the employed equations
per se are to someone unfamiliar with terms such as velocity, acceleration, etc. unusual or
even discouraging. This paper therefore presents a formal definition of an artificial life
construction framework, for which a transition from linguistic descriptions to
mathematical approximations is currently still required, but will at a later date be
omitted. Our progress on this matter can be seen in the recently published papers [18– 21].
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