逢甲大學97學年度碩士班招生考試試題

編號:067

※請務必在答案卷作答區內作答。

共2頁 第1頁

1. (20%) Choose the best answer.

(1) In how many ways can one go from (0,0) to (7,3) if the only moves permitted are R: $(x, y) \rightarrow (x+1, y)$ and U: $(x, y) \rightarrow (x, y+1)$, and the number of U's may never exceed the number of R's along the path taken?

(a) 75

(b) 120

(c) 10!

(d) 3!7!

(e) none of the above

(2) How many positive integers n divide 100137n + 248396544?

(a) 48

(b)126

(c)144

(d)252

(e) none of the above

(3) A prefix code for $\{a, b, c, d, e, f\}$ is given by a: 00, b: 01, c:101, d:x10, e:yz1, f: 10w1, where x, y, z, w $\in \{0, 1\}$. Then x + y + z + w =

(a) 0

(b)1

(c)2

(d)3

(e) 4

(4) If $A = \{1, 2, 3, 4, 5\}$, how many equivalence relations on A are there?

(a) 15

(b) 25

(c) 51

(d) 203

(e) none of the above

(5) The n-dimension hypercube Q_n is an undirected graph with 2^n vertices

which are labeled with the 2^n n-digit binary numbers. There is an edge between two vertices if their binary labels differ exactly at one digit. How many of the following statements are true?

(i) Q_n is bipartite.

(ii) Q_n has a Hamilton cycle.

(iii) Q_n has an Euler circuit.

(iv) The diameter of Q_n is n.

(a) 4

(b) 3

(c) 2

(d) 1

(e) 0

2. (10%) Find the value of sum after the given program segment is executed. (Here i, j, k, increment, and sum are integer variables.)

increment := 0

sum := 0

for i := 1 to 10 do

for j := 1 to i do

for k := 1 to j do

begin

increment := increment +1
sum := sum + increment

end

- 3. (10%) Let P(X) denote the power set of a set X, i.e. P(X) = the set of all the subset of X. Prove or disprove each of the following for sets $A, B \subseteq U$
 - (1) $P(A \cup B) = P(A) \cup P(B)$
 - (2) $P(A \cap B) = P(A) \cap P(B)$
- **4.** (10%) A proper k-edge-coloring of G is an assignment of k colors to the edges of G such that no two adjacent edges have the same color. The edge chromatic number of a graph G, denoted by $\chi'(G)$, is the minimum k for which G has a proper k-edge-coloring. Let K_n be the complete graph of n vertices. What is the value of $\chi'(K_n)$? Explain.
- **5.** (10%) Let $A = \{1, 2, 3, 4, 5\}$ and $B = \{1, 2, 3\}$
 - (1) How many functions $f: A \rightarrow B$ are there?
 - (2) How many functions $f: A \rightarrow B$ are one-to-one?
 - (3) How many functions $f: A \rightarrow B$ are onto?
 - (4) How many functions $f: A \rightarrow B$ are nondecreasing?
 - (5) How many functions g: $B \rightarrow A$ are one-to-one?
- 6. (10%) Use a combinatorial argument to prove that

$$\frac{(3n)!}{2^n \times 3^n}$$
 and $\frac{(n^2)!}{(n!)^{n+1}}$ are integers.

- 7. (1) (5%) Let $x_1, x_2, ..., x_n$ be arbitrary integers. Show that $x_i + x_{i+1} + ... + x_{i+k}$ is divisible by n for some $i \ge 1$ and $k \ge 0$.
 - (2) (10%) Use the pigeonhole principle to show that the decimal expansion of a rational numbers must, after some point, become periodic.
- 8. (1) (5%) Construct a finite-state machine M₁ whose output tells the number of finite symbols, modulo 3, that have been applied.
 - (2) (10%) The input and output alphabets of machine M_2 are $\{0, 1\}$. Construct a finite-state machine M_2 whose output sequence r(t)r(t-1)...r(1) is to be a replica of the input sequence s(t)s(t-1)...s(1) delayed by two units:

$$r(t) = s(t-2)$$
 for $t>2$.

We do not care what r(1) and r(2) are.