
1 Introduction

Automated generation of
control skeletons for use
in animation

Lawson Wade1,
Richard E. Parent2

1 ACCAD, The Ohio State University, 1224 Kinnear
Road, Columbus, Ohio 43212, USA
E-mail: lwade@cgrg.ohio-state.edu
2 Computer and Information Science, The Ohio State
University, 395 Dreese Lab, 2015 Neil Avenue,
Columbus, Ohio 43210, USA
E-mail: parent@cis.ohio-state.edu

Published online: 15 March 2002
c© Springer-Verlag 2002

This paper describes an algorithm for au-
tomatically generating a control skeleton
(sometimes called an IK skeleton) for use
in animating a polygonal data model. The
algorithm consists of several steps, each of
which is performed automatically. The basic
process involves discretizing the figure, com-
puting its discrete medial surface (DMS),
and then using the DMS both to create the
skeletal structure and to attach the vertices of
the model to that structure. The system can
produce a reasonably good control skeleton
for any of a variety of figures in as little as 1
or 2 min on a low-end PC.

Key words: Control skeleton – IK skeleton –
Skeleton rig – Articulated figure

Correspondence to: L. Wade

Articulated figures abound in computer graphics.
Posing these figures for modeling or animation is
accomplished using a control skeleton. The control
skeleton consists of a hierarchy of segments and
joints along with information for anchoring the sur-
face geometry (or “skin”) to that hierarchy so that
the geometry can be adjusted when the skeleton is
repositioned.
Many modeling and animation packages provide
support for users to create a control skeleton for
a model. Nevertheless, the creation of the skeleton
can be a laborious process requiring several hours
of work, and a user typically must possess a fair de-
gree of proficiency with a package to obtain even
rudimentary motion via a control skeleton.
In this paper, we present a method for fully auto-
matic generation of a control skeleton, summarizing
the relevant work from the first author’s dissertation
(Wade 2000). After prompting the user for a small
number of input parameters, our algorithm converts
a polygonal data model into a voxelized representa-
tion and approximates the Euclidean distance map
(EDM) and the discrete medial surface (DMS)1 for
the voxelized model. Next, a tree-structured voxel
path is constructed from the voxels of the DMS, and
that tree is then divided into a structure of segments
and connecting joints. Finally, the voxel representa-
tion and the DMS are used to generate anchors for
attaching the vertices of the polygonal data to the
segments. Although the method is not without its
shortcomings, it is quite fast, and it produces control
skeletons of rather good quality.

2 Related work

Perhaps the earliest work on automatic skeleton gen-
eration is that of Tsao and Fu (1984). For an object
given as a 2D bitmap, a distance map is computed.
The DMA of the object is extracted from the map and
converted into a graph. Randomly applied node mod-
ification routines permit minor bending and reposi-
tioning of the graph. Using distance map values at

1 The medial axis (MA) of a 2D object is defined as the lo-
cus of the centers of all disks interior to the object that touch
the boundary of the object at two or more points. For a 3D
object, spheres are used instead of disks, and the locus yields
the medial surface (MS). For discretized figures, the MA/MS
is approximated as a subset of the pixels/voxels, and the ap-
proximation is referred to as the discrete medial axis/surface
(DMA/DMS). The MA/MS is often called the geometric skele-
ton of an object.

The Visual Computer (2002) 18:97–110
Digital Object Identifier (DOI) 10.1007/s003710100139

98 L. Wade, R.E. Parent: Automated generation of control skeletons for use in animation

each node, an inverse distance transformation (IDT)
allows the construction of a new pixelized object,
so the graph functions as a control skeleton. A sim-
ple 3D example of the procedure is also presented.
Because the method operates entirely in the discrete
domain and uses a simple IDT, distinct boundary fea-
tures of the objects (e.g. ridges and valleys) usually
disappear in the stochastically generated instances.
In our method, the object and the control skeleton
exist in the continuous domain, which allows more
sophisticated joints, more appropriate segments, and
better preservation of boundary features.
A somewhat similar method to Tsao and Fu’s is
one by Gagvani, Kenchammana-Hosekote, and Sil-
ver (Gagvani et al. 1998). It also operates in the dis-
crete domain and has steps to compute a distance
map and DMS for a figure. DMS voxels are auto-
matically connected into a graph whose minimum
spanning tree is then provided to the user as the con-
trol skeleton. An IDT is used to generate posed in-
stances. Gagvani and Silver have implemented the
method as a plug-in for MayaTM (Gagvani and Sil-
ver 1999). This plug-in can convert the graph into
a skeleton in Maya’s internal format; however, the
resulting skeleton is usually much too complex. In-
stead, Gagvani and Silver suggest that a user view the
DMS while manually constructing a skeleton whose
segments run along stretches of DMS voxels. Ani-
mation of the Maya skeleton can be exported to drive
the animation of the voxelized figure. In contrast, our
method is fully automated and generates a control
skeleton with a reasonable number of segments and
joints in fairly appropriate positions.
TeichmannandTeller (1998)havepresentedamethod
for assisting in the generation of control skeletons.
Given a closed polyhedral model, their algorithm
first computes a Voronoi diagram for a sufficiently
dense set of sample points on the surface of the poly-
hedron. The user then selects Voronoi vertices as
endpoints of branches of the control skeleton, and
the Voronoi graph is simplified to produce a tree that
extends to those vertices. Next, the user selects span-
ning tree nodes to be joints of the skeleton. Portions
of the tree lying between joints and/or endpoints be-
come skeletal segments. A sophisticated network of
springs is created to attach polyhedral vertices to the
skeleton. Besides using a voxelization approach, our
algorithm differs from that of Teichmann and Teller
in several ways: it places fewer restrictions on the
polygonal data, achieves a higher degree of automa-
tion, and is much faster.

In a method proposed by Bloomenthal and Lim
(1999), a control skeleton for an object is automat-
ically produced from the MS of an object. The MS
is computed using an implicit method and is stored
as a polygonal mesh which contains distance-to-
surface information. After the skeleton is posed, the
MS mesh is updated accordingly; then, an implicitly
defined IDT is applied to reconstruct the surface. Ap-
parently a commercial version of their algorithm is
planned. A comparison with our algorithm is diffi-
cult, because few details are provided by Bloomen-
thal and Lim with respect to the construction of the
control skeleton, the quality of the results, or the ex-
ecution time. Their method appears to restrict the
input object to be a single, closed surface. Also, im-
plicit methods typically require more computation
time than non-implicit methods.
Note that many of the steps of the algorithm de-
scribed in this paper are nearly identical to those in
an earlier report on this research (Wade and Parent
2000). The main differences between the two are that
the one described here uses the DMS of the vox-
elized object, that it includes a step to smooth the
path tree before creating the skeleton structure, and
that it provides the user with slightly more control
over the process through the use of a few more input
parameters. The implementation here is significantly
faster, and the results are slightly better than the re-
sults from the previous method.

3 The algorithm

The primary goal of the algorithm is the automatic
construction of a control skeleton suitable for ani-
mating a given model. In order to have the algorithm
perform well in the general case, some assumptions
have been made. Chief among these is the belief that
the skeleton produced by the algorithm should ex-
hibit a correspondence to the model in both shape
and apparent flexibility. To this end, the skeleton pro-
duced should be centrally located within the model,
and it should have branches that logically correspond
to various protrusions. The positions and lengths of
its segments should relate to geometric aspects of the
surface and volume, and the positions and axes of
its joints should seem appropriate both locally and
globally. Moreover, the model and skeleton should
be attached in a simple but meaningful fashion. Fi-
nally, there should be enough of a skeleton to provide
some desired level of control, yet there should not

L. Wade, R.E. Parent: Automated generation of control skeletons for use in animation 99

be so much of a skeleton that its manipulation would
seem unwieldy.
Closely associated with the primary goal is the aim
of requiring very little user input. Besides the polyg-
onal data, the user can specify seven input parame-
ters, though generally the algorithm performs fairly
well using the default values of the parameters. The
most influential parameters are the voxel-size param-
eter, the exposure threshold, and the closeness-of-fit
parameter. The voxel-size parameter is simply the
desired edge length of a voxel; the exposure thresh-
old helps control the results of the DMS calculation;
and the closeness-of-fit parameter helps control the
extent of skeletal branches. The various parameters
will be discussed in more detail as they arise in the
presentation of the algorithm.
The geometric input to the algorithm is currently re-
stricted to sets of polygonal data. The polygons are
not required to form a single, closed surface, or re-
ally even to be connected at all. What is required is
that after voxelization of the polygonal data and clas-
sification of each voxel as being either interior or
exterior to the object, the interior voxels form a sin-
gle, connected set. A closed polyhedron works quite
well as input, but a figure consisting of overlapping
closed polyhedra works equally well. The voxeliza-
tion and classification process is often rather forgiv-
ing of aberrant polygons or of polygonal surfaces
that are not closed.
The remainder of this section describes the vari-
ous steps of the algorithm. Section 3.1 discusses the
manner in which the given model is discretized for
the computation of the distance map, and Sect. 3.2
tells how the DMS is computed for the discretized
model. Section 3.3 describes how the medial surface
approximation is used to generate a tree-like struc-
ture of voxel paths, which, as detailed in Sect. 3.4,
is used to generate the segments and joints of the
control skeleton. Also in that section, the method of
attaching the original polygonal model to the control
skeleton is presented.

3.1 Voxelization and distance map
construction

For uniformity, the first step of the algorithm is to
transform the model so that its bounding box lies just
inside the unit cube. A voxelization of the bound-
ing box is then performed, with the resolution being
determined by the voxel-size parameter. After inter-
secting the polygons with the grid, a filling routine

1
1
1

1

1

1

1

1

1

1

1

1
1

1

1
1
1

1
1
1
1
1
1
1
1
1
1
1

1

1

1

1

1
1
1
1
1

1

1
1

1
1

1
1

1
1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1
1

1

1
1
1
1

1

1

1
1

1

1
1
1
1
1

1
1
1

1

1

1

1

1
1
1

1
1
1

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2
2

2
2

2

2

2

2

2

2

2

2

2

4 4 4
4

4

4

4
4
4
4
4
4
4
4
4
4

4

4

4

4
4

4

4

4 4

4

4

4

4

4

4

4 4 4

4

4

4
4
4

4

4
4
4

4
4

4

4
4

5
5

5

5

5

5

5
8

8
5

5
8

8
5

5

5

5

5
8 5

5
5

5 5
8

8

5

5

5
8

8
8

8

8

8

8

8
8

8

9
9
9
9
9
9

9

9 9 9

9

9

9

9

9

9

9 9 9 9

9

10
13
13
10

10
13
10

13 10

10
13 10

10
13

16

10

13 10

13
13

13
17

13 17
1316

16
16

16 16 16
16

16
16

16
16

16
16 16 16

17
25 20 17

17 20 20

Fig. 1. The 2D Euclidean distance map (EDM) for a discretized,
animal-shaped polygon. Each cell’s value is the square of the
Euclidean distance to the nearest exterior cell

is used to complete the labeling of each voxel as
either interior or exterior to the figure. For simplic-
ity, we require that the interior voxels form a single
26-connected group.
The objective is to have a sufficient number of inte-
rior voxels. Experiments have shown a voxel size of
0.005, 0.01, or 0.02 units to work fairly well, depend-
ing on the manner in which the transformed object
fills the unit cube. Anywhere between 20 000 and
200 000 interior voxels is usually sufficient to pro-
duce a reasonable control skeleton.
The next step is the generation of an EDM for the
interior voxels. Figure 1 shows an example of a 2D
EDM; the extension to three dimensions should be
clear.2 Exact, efficient computation of the EDM is
not easily implemented, so many people instead use
approximations (Danielsson 1980). Nevertheless,
linear time algorithms for computing the exact EDM
in two dimensions do exist (Breu et al. 1995), and al-
gorithms for linear time computation of 3D maps are
being investigated. In our implementation, we use
a propagation technique that computes a very close
approximation to the EDM and operates in linear
time with respect to the number of interior voxels.

2 The design for Fig. 1 was borrowed from one of the many ex-
cellent diagrams appearing in a paper by Ogniewicz and Kübler
(1995).

100 L. Wade, R.E. Parent: Automated generation of control skeletons for use in animation

1
1
1

1
4
1

1
4
2
1

1
4
4
1

1
2
5
5
2
1

1
1
2
5
8
8
5
2
1

1
1
1

1
1
1
1
1
1
1
1
1
1
1
2
4
5
8
13
13
8
5
2
1

1
4
2
1
2
4
4
4
4
4
4
4
4
4
4
5
8
10
13
13
10
8
5
2
1

1
1
1
1
1
2
4
5
8
9
9
9
9
9
9
10
13
10
9
8
5
4
2
1

1
1
2
4
5
8
13
16
16
16
13
8
5
4
4
2
1
1

1
1
2
5
10
17
25
17
10
5
2
1
1
1

1
4
9
16
20
13
8
4
1

1
4
9
16
17
10
5
2
1

1
4
9
16
16
9
4
1

1
4
9
16
16
9
4
1

1
4
9
16
16
9
4
1

1
4
9
16
16
9
4
1

1
2
5
10
17
16
9
4
1

1
1
2
5
8
13
20
16
9
4
1

1

1
1
2
4
5
8
13
17
20
16
9
4
1

1
1
1
1
2
4
4
4
5
8
9
10
13
13
8
4
1

1
2
4
4
4
2
1
1
2
4
4
5
8
10
5
2
1

1
1
1
1
1

1
1
1
2
5
8
4
1

1
4
4
2
1

1
2
1
1
1

1
1
1

Fig. 2. Examples of the coverage of three disks corresponding
to the cells shown in black. The radius of each disk is equal
to the square root of the respective EDM value. The dark gray
cells (and the black cells) are contained in the disks and are thus
considered to be “covered” by the black cells

A concept related to the distance map, and one that
will come into play during the formation of the path
tree, is that of “coverage”, an application of the IDT.
Each value in the 3D EDM defines a sphere, cen-
tered at the corresponding voxel, that just touches the
boundary of the object. The radius of the sphere for
a voxel, vi , is

√
di , where di is the (squared) distance

map value for vi . Any voxel whose center is con-
tained within the sphere is said to be “covered” by vi .
Figure 2 illustrates coverage as it would apply within
a 2D EDM.

3.2 Medial surface extraction

After the EDM has been computed, it is fed into
a routine for computing the DMS of the object.
Unlike the continuous MA/MS, there is no pre-
cise mathematical definition for the DMA/DMS,
though several desirable properties for the computa-
tion have been identified (Ge and Fitzpatrick 1996;
Staunton 1996). Methods for the procedure con-
sist of two main approaches: thinning algorithms
(Staunton 1996; Lee et al. 1994) and extraction algo-
rithms (Danielsson 1980; Ge and Fitzpatrick 1996).
Thinning algorithms work by iteratively removing
selected pixels/voxels from a discretized object in

an attempt to whittle the object down in topological
fashion to a more simple representation. Extraction
algorithms involve first computing the EDM for the
figure and then constructing the DMA/DMS by at-
tempting to identify the ridges implied by the values
within the map.3 For the 3D case, proper extraction is
quite difficult due to the complexities of defining and
identifying saddle points along the ridges.
Our implementation follows the extraction model
and produces a connected DMS quite suitable for our
purposes here. It accepts one input parameter, the
exposure threshold, which influences roughly how
thick the DMS appears as well as to what degree
it extends into each individual surface protrusion of
the discretized object. The DMS shown in Fig. 3a is
a fairly typical example of the results.

3.3 Path tree generation

After the DMS voxels have been identified, a path
tree is generated that effectively simplifies the DMS
to a tree structure of 1D pathways (referred to as
chains). The path tree is developed so as to main-
tain a tree structure regardless of the genus of the
DMS or the object. The formation of the path tree be-
gins by automatically identifying a centrally located
voxel referred to as the heart. A breadth-first search
of the DMS is performed, beginning at the heart in
order to identify extreme points in the DMS, which
are basically points of local maximum in the search.
These extreme points are potential end-effectors of
the control skeleton. The length of the path between
the heart voxel and the farthest DMS voxel is saved
for future use; this length is called the heart radius.
Figure 3a shows the heart voxel and extreme points
for a DMS of a horse.
The process of growing the path tree then begins,
and each new branch of the path tree is created
to extend to a previously unreached extreme point.
When a new branch is added to the path tree, any
DMS voxels that lie within any of the correspond-
ing spheres of the new branch are marked as being
covered by the path tree. This coverage is used to
help weed out insignificant extreme points result-
ing from spurious extensions of the DMS. When no

3 The 2D EDM can be interpreted as a height field and viewed
as a 3D landscape; the ridges of the landscape represent
branches of the DMA. Thus, extracting the DMA (or DMS)
from a 2D (or 3D) EDM amounts to finding and following the
ridges implied within the map; the main difficulty comes in han-
dling saddle points along the ridges.

L. Wade, R.E. Parent: Automated generation of control skeletons for use in animation 101

a b c

d e f

Fig. 3a–f. Forming path-tree extension. a DMS of a horse with the heart voxel labeled and the extreme points drawn as black
spheres. The extreme point at the tip of the tail is the first point of the path tree. b The first extension to the path tree reaches
from the tail to the nose. c The second extension reaches to the right hind hoof. d The next three extensions branch out to the
other hooves. e The final branch extends to the ears. The remaining extreme points are not far enough from the covered region
to warrant further extensions of the path tree. f The completed path tree without the other DMS voxels; path-tree voxels are
drawn as small spheres to allow the edges of the path tree to be seen

more path-tree branches can be added that are at
least a certain length, path-tree growth stops. Path
tree growth is illustrated in Fig. 3. Chains of the path
tree are then identified, and the chain vertices are
filtered to help smooth the otherwise jagged path-
ways resulting from stepwise movement between
consecutive voxels along the chain. The follow-
ing subsections describe these processes in more
detail.

3.3.1 Forming path-tree extensions

During the formation of the path tree, the algorithm
examines connected paths of DMS voxels. Two mea-
sures of voxel paths are used during this process: the
path length and a special weighted measure. The path
length is simply the sum of the distances between the

centers of consecutive voxels along the path; the dis-
tance between the centers of two adjacent voxels is
l, l

√
2, or l

√
3, where l is the edge length of a voxel.

The weighted measure, WP , of a voxel path, P, is
based on the EDM:

WP =
∑

vi∈P

1

d 3
i

,

where di is the squared value for voxel vi as stored
in the distance map (the use of 3 as the exponent was
arrived at empirically).
The purpose of the weighted measure is to provide
a means for favoring centralized paths through the
figure that follow along the deepest portions of the
DMS. Using a modified version of Dijkstra’s short-

102 L. Wade, R.E. Parent: Automated generation of control skeletons for use in animation

est paths algorithm [for the standard version, see
Cormen et al. (1990)], the algorithm can find the
voxel path through the DMS connecting any given
pair of voxels and minimizing the weighted measure
of all such connecting paths. Although minimiz-
ing the weighted measure does not guarantee that
the path will follow along the deepest region of the
DMS, experimental results have shown that it ap-
pears to do so.
The extreme point farthest from the heart voxel is the
starting point for the first branch of the path tree. The
path tree is then grown by creating and appending ex-
tensions to it until further extensions to the path tree
will unnecessarily complicate the structure. Each ex-
tension to the path tree is formed by executing the
following steps:

1. Mark (or update) the DMS voxels covered by the
path tree.

2. Find the extreme point DMS voxel, vf , farthest
from the covered region (note that the group of
extreme points containing vf must not already
have had a branch of the path tree extended to one
of its members, and also note that any covered ex-
treme points are simply ignored).

3. Find the minimum weight path of DMS voxels
connecting vf to the path tree.

4. Append that minimum weight voxel path to the
path tree.

In step 1, note that the coverage of the DMS does
not need to be recomputed each time a new branch
is added to the path tree; instead, the coverage can
simply be updated in the area surrounding the new
extension.
In step 2, the algorithm searches for the non-covered
vf that is farthest from the set of covered DMS vox-
els. If the shortest path length from vf to a cov-
ered DMS voxel is greater than or equal to a certain
threshold, then the algorithm proceeds with steps 3
and 4 to extend the path tree to vf and then repeats
the process beginning with step 1. If the shortest path
length from vf is less than the threshold, then steps 3
and 4 are skipped, and no more branches are added to
the path tree.
The threshold used in this process is the product of
the closeness-of-fit parameter and the heart radius.
Observation has shown that a closeness-of-fit value
between 0.05 and 0.1 works fairly well for produc-
ing a good, simple control skeleton – this means
that a new branch will be added if it extends at
least 1

20 to 1
10 of the length of the heart radius be-

yond the current coverage of the path tree. Using
finer values will usually allow the extension of the
path tree into smaller protrusions of the object, such
as the fingers of a hand; however, it can also re-
sult in the formation of other seemingly spurious
branches.
Step 3 makes use of the modified version of
Dijkstra’s shortest paths algorithm mentioned pre-
viously. Each path-tree voxel is assigned a weight
of zero and becomes a source point for the short-
est paths. The weighted measure is applied as the
shortest path search spreads through the DMS.
When the search reaches vf , it is a simple mat-
ter to backtrack to find the actual minimum weight
path from vf to the path tree. This minimum weight
path is added to the path tree. Its coverage of
the DMS voxels is then computed as the pro-
cess of extending the path tree is repeated from
step 1.

3.3.2 Smoothing the path tree

The path tree for the horse has been redrawn as
a collection of vertices and edges in Fig. 3f. The
vertices can be sorted into three classes. Endpoint
vertices have only one adjacent edge – these cor-
respond to the extreme points used. Junction ver-
tices have three or more adjacent edges – this is
where the path tree forks. The remaining vertices,
termed intermediate vertices, have exactly two adja-
cent edges. The endpoint and junction vertices split
the path tree into a set of connected path segments, or
chains.
Due to the regularity of the voxelization, the chains
of the path tree can be fairly jagged. The jaggedness
may be especially noticeable in parts of the figure
where the main direction of a chain section does not
align reasonably well with any of the axes of the
voxelization. To lessen any peculiar effects the orien-
tation of the voxelization can have on the path tree,
and also to diminish the influence of the jaggedness
on the later creation of segments and joints, the path
tree is subjected to a smoothing operation.
As each chain of the path tree is identified, it is
smoothed by applying a filtering process to aver-
age positions of consecutive voxels along the chain.
A filter radius of three edges usually works well to
smooth out any jaggedness of the original chain, al-
though for ease of illustration, a filter radius of two
edges is used in Fig. 4. Note that the filter radius is
shortened at the ends of the chain. Figure 5 shows the
result of smoothing the path tree for the horse.

L. Wade, R.E. Parent: Automated generation of control skeletons for use in animation 103

p0

p1

p2 p3 p4

p5

p6

p7

p8

p9

p10

p11

s0

s1
s2

s3
s4

s5

s6
s7

s8

s9

s10

s11

1 unit

4

5

Fig. 4. Smoothing of a path-tree chain. To obtain the smoothed chain s0 . . . s11, the chain p0 . . . p11 is filtered using a simple
box filter at each vertex; for example, s5 = (p3+p4+p5 +p6 +p7)/5

Fig. 5. The smoothed path tree for the horse; the result of applying the smoothing operation to the chains of the path tree from
Fig. 3f

3.4 Control skeleton construction

The path tree itself is usually too complicated to use
directly as the structure of the control skeleton; in-
stead, an approximation to the path tree is formed
in what is called the skeletal graph (which is re-
ally a tree). The skeletal graph is the precursor to
the final control skeleton structure. It is created so
as to approximate the path tree using appropriately
sized edges, each of which will become a segment
of the control skeleton. The discussion that follows
explains how the skeletal graph is constructed, how
it is used in to create the segments and joints of the
control skeleton, and how vertices of the polygonal
model are attached to the skeleton structure.

3.4.1 Creating the skeletal graph

The initialization of the skeletal graph results from
a simple conversion of path-tree chains. The end-
point and junction voxels of the path tree are used to
create the initial vertices of the skeletal graph. Each
chain of the path tree is used to create an initial edge
of the skeletal graph.

After the initial edges and vertices of the skeletal
graph are formed, tests are performed to determine
which edges should be split. Splitting of a skeletal
edge is accomplished by inserting an intermediate
vertex into the skeletal graph (at the location of a spe-
cially selected chain vertex from the corresponding
path-tree chain) and replacing the edge with two new
edges. Each new edge then corresponds to a subsec-
tion of the original chain. The edges for any partic-
ular chain may be split repeatedly in order to form
closer approximations to the chain or in order to have
more appropriate lengths.
Two input parameters are used to specify a range
of desired edge lengths (the specified range is ac-
tually applied not to the skeletal edges but to their
corresponding section of a path-tree chain). The pa-
rameters, called min-fraction and max-fraction, are
entered as values between zero and one (default val-
ues are 0.1 and 0.3, respectively). The lower limit of
the range is the product of min-fraction and the heart
radius; the upper limit of the range is the product of
max-fraction and the heart radius. Any skeletal edges
whose chains are already shorter that the lower limit

104 L. Wade, R.E. Parent: Automated generation of control skeletons for use in animation

s0

s1
s2

s3
s4

s5

s6

s7

s8

s9

s10

s11

1 unit

6

7
Fig. 6. Error and splitting of a skeletal graph edge. The error for the skeletal edge s0–s11 is the length of the perpendicular
segment to s4, 2.79 units. The best split for the edge comes from inserting a skeletal vertex at s3, as this results in the smallest
maximum error (0.50 units) for the two replacement edges (the error for s0–s3 is 0.41 units, and for s3–s11 it is 0.50 units)

Fig. 7. The skeletal graph for the horse. Each edge of the graph is used to create a segment for the control skeleton. Joints are
created at interior vertices of the graph, but more than one joint may be created at a vertex depending on how many edges are
incident to that vertex

will not be split. Any skeletal edges whose chains are
longer than the upper limit will definitely be split.
Edges whose chain lengths are within the range may
be split based upon how closely they approximate the
corresponding chain section.
Skeletal edges are assigned error values according
to how closely they approximate the corresponding
chain section of the smoothed path tree. This error
is simply the maximum distance between the skele-
tal edge and one of the vertices of its related chain
section. Figure 6 provides an illustration of the error
computation and the splitting of a skeletal edge.
The splitting of skeletal edges is performed incre-
mentally; at each step, the entire skeletal graph is
compared to the entire path tree to determine which
edge should next be considered for possible split-
ting. In this way, the skeletal graph gradually be-
comes more complex while providing an accept-
able approximation to the path tree at any stage of
the splitting process. The reason for this global ap-
proach is to provide the best approximation given
the constraint imposed by the number-of-segments

parameter (each skeletal edge corresponds to one
segment of the control skeleton). Another input pa-
rameter controls the error tolerance allowed for the
approximation.
The processing is accomplished in an efficient man-
ner through the dynamic use of a heap whose node
weights are the error values of the skeletal edges –
the node at the root represents the next edge to be
considered for possible splitting. If the number-of-
segments parameter has been set, then the splitting
process is repeated until the skeletal graph contains
an equivalent number of edges (or until the heap is
empty and there are no more edges to be split). If the
number-of-segments parameter is left unspecified by
the user, then splitting stops when the heap is empty.
Figure 7 shows the skeletal graph computed by al-
lowing the heap to empty.

3.4.2 Creating segments and joints

Creating the segments of the control skeleton is sim-
ple. Each edge of the skeletal graph essentially be-
comes a segment of the control skeleton. A deep seg-

L. Wade, R.E. Parent: Automated generation of control skeletons for use in animation 105

ment is then selected to host the root joint for the
control skeleton, or rather to be the only segment
connected to the root joint. The root joint itself is po-
sitioned at the midpoint of the skeletal edge for that
segment (note that it does not divide the segment).
The location of the root joint imposes proximity re-
lationships on the skeletal graph edges and thus on
the control segments. For each proximal-distal pair
of adjacent segments, a joint is created at the shared
joint-voxel (note that this results in coincident joints
at the branching points of the tree structure). Each
joint other than the root joint thus has one proximal
and one distal segment; the root joint has only a dis-
tal segment. Vertices of the skeletal graph that are not
used for joint creation become end-effector points of
the control skeleton.
Each joint has three rotational degrees of freedom
defined about an orthogonal set of vectors: the z-axis
points outward along the distal segment, the x-axis
is formed to be perpendicular to the plane defined by
the proximal and distal segments, and the y-axis is
then formed to complete a right-handed coordinate
system. Degeneracies in this method (e.g. parallel
vectors) are handled by searching proximally or dis-
tally to find other suitable base vectors.

3.4.3 Anchoring skin vertices

Once the segments and joints have been assembled,
each vertex of the polygonal data is anchored to
one or more segments. Each control segment cor-
responds to a section of a chain of the path tree,
and each voxel along that section of the path tree
has a sphere which covers voxels of the figure (see
Sect. 3.1 for an explanation of coverage). The collec-
tive coverage for a particular section of the path tree
essentially defines a volume within which the cor-
responding control segment exerts influence. In the
actual implementation, each voxel gathers and main-
tains a set of pointers to those control segments that
cover (or influence) it.
Not all voxels interior to the figure are necessarily
covered by spheres of path-tree voxels. A voxel that
is not covered by some path-tree voxel will not at first
have an influencing set of control segments; instead,
such a set must be created. The sets for such vox-
els are constructed by propagating sets from covered
voxels into non-covered regions of the voxelization.
This propagation is performed in a breadth-first man-
ner moving away from the covered region.
For each vertex, an anchoring equation is created.
The voxel that contains a specific vertex provides the

list of control segments that influence that vertex.
The coordinates of that vertex can then be expressed
within the local coordinate frame for each influenc-
ing segment. When the control skeleton is moved,
the (fixed) local definitions of that vertex are con-
verted into global positions and used in a weighted
sum formula that computes a new global position for
the vertex:

pv =
∑

si∈S

wi × (origini + pi ×RtoWorldi) .

Here, S is the set of control segments that influence
a specific vertex v, pv is the global position of v, and
pi is the local position of v in the frame of segment si .
The origin of the local frame of si is given by origini ,
and RtoWorldi is the 3 × 3 rotation matrix used to
help transform a point from the local frame of si to
the global frame of the figure. The amount of influ-
ence si exerts on v is represented in the weight wi .
If only one segment influences v, wi is set to one;
otherwise, each weight is computed so that closer
segments will have larger weights and so that the
weights will sum to one:

wi = totaldist−disti
(n −1)× totaldist

,

where n is the number of segments in S, disti is the
shortest distance between v and si , and totaldist =∑

si∈S disti . Note that wi , pi, disti , and totaldist are
constants, computed only once during the set-up.
Values that are updated each time the control skele-
ton is repositioned include origini , RtoWorldi , and,
of course, pv.

4 Results

In general, the algorithm is quite effective in produc-
ing a useful control skeleton in a short period of time.
The quality of individual results is highly depen-
dent on the object and the input parameters. In some
cases, the algorithm performs extremely well, but in
some other cases, the algorithm does only a mediocre
job. For most objects that an animator might wish to
animate by using a control skeleton, the skeleton pro-
duced by the algorithm is at least a reasonable start
worthwhile for finer hand-editing.
Table 1 shows the results of several executions of the
algorithm on various polygonal models. The models
themselves are shown in both the default stance (as

106 L. Wade, R.E. Parent: Automated generation of control skeletons for use in animation

Voxel Number of Grid Total Interior Time
size segments dimensions voxels voxels (min:s)

Horse (681 vertices, 1354 polygons)
0.02 32 51×42×15 32 130 7 324 0:02
0.01 36 101×84×29 246 036 48 626 0:11
0.005 31 201×168×58 1 958 544 352 971 1:29

Human (349 vertices, 694 polygons)
0.01 29 37×101×17 63 529 14 044 0:04
0.005 27 73×201×33 484 209 92 934 0:24
0.0025 31 145×401×65 3 779 425 675 120 2:58

Octopus (2347 vertices, 4690 polygons)
0.01 52 101×59×78 464 802 42 772 0:11
0.008 57 126×74×97 904 428 79 926 0:21
0.00675 51 149×88×115 1 507 880 129 474 0:34

Jellyfish (2526 vertices, 5048 polygons)
0.008 102 119×126×110 1 649 340 157 150 1:04
0.007 103 136×143×125 2 431 000 227 784 1:36

Table 1. Statistics from executions of the al-
gorithm on various models. Each row repre-
sents a single execution in which the voxel-
size parameter was specified as in the first
column, the number of control segments was
determined automatically, and all other input
parameters used default values. Rows in bold
correspond to the set-ups used for Figs. 7, 10,
and 11. The rightmost column shows the exe-
cution time required on a Silicon GraphicsTM

O2TM (R5000 Processor), though tests on
a PC with a 133 MHz IntelTM PentiumTM

processor running under LinuxTM had simi-
lar timings (only about 5% longer)

a b c

Fig. 8. The horse and two random poses. In a, the horse is shown in its default pose (as input for the algorithm). The other
images are selected random poses of the horse generated using the skeleton resulting from Fig. 7

input to the algorithm) and in selected random poses
using the generated control skeletons (see Figs. 8, 10,
and 11). Since each model has been scaled to fit in-
side the unit cube, a grid size of 0.01 will allow ap-
proximately 100 voxels along the edge of the unit
cube.
The graph in Fig. 9 illustrates the unproven but ap-
parently superlinear time complexity of the algo-
rithm (superlinear with respect to the number of in-
terior voxels). For the various executions, all input
parameters used default values except for voxel-size.

The data in the figure can be approximated fairly
well by the function

f(x) = x1.2

54 000
,

where x is the number of interior voxels and f(x)
is the number of seconds required to create the con-
trol skeleton. Although the analysis is derived using
the horse, graphs created for other objects were very
similar.

L. Wade, R.E. Parent: Automated generation of control skeletons for use in animation 107

0

60

120

180

240

300

0 200K 400K 600K 800K 1000K

se
co

nd
s

of interior voxels
9

10

Fig. 9. An analysis of execution times for the algorithm. Each dot represents one execution of the algorithm on the horse
model. The time complexity appears to be superlinear with respect to the number of interior voxels (see Sect. 4 for an
approximating function)

Fig. 10. a,b Control skeleton for a human figure and one pose. a Skeleton generated using a voxel-size parameter of 0.005.
b Figure from selected random pose of the skeleton

With respect to the goals described at the begin-
ning of Sect. 3, the algorithm performs reasonably
well. As can be seen in the figures, the control skele-
tons are centralized, and they have branches that
reach to the ends of the major protrusions of the
objects. The segments and joints relate fairly well
to the surface features, though there is still room
for improvement. As for the idea of having “just
enough but not too much” of a control skeleton,
results are rather highly dependent on the objects
given as input. For the most part, skeletons produced
by specifying the voxel size and using default val-
ues for the other input parameters are reasonably
succinct. With a closeness-of-fit value below 0.1,
the algorithm can extend the skeleton into shorter
surface protrusions such as the fingers of a hand;
when doing so, however, it also usually produces at

least a few spurious branches in other parts of the
figure.
One area where the algorithm can have notice-
able difficulty is with multi-junction points, such
as where two “arm” sections of the path tree might
joint a “spine” section of the path tree (often the arm
sections join the spine section at different points). In-
creasing the exposure threshold so that the DMS is
rather lean often collapses the area involved in the
multi-junction point and sometimes results in bet-
ter joining of path-tree extensions in the area of the
junction.
As can be expected, the quality of the skeleton is
dependent on the quality of the voxelization of the
object. The use of finer grids allows better approxi-
mations of the surface details of the object, but not
without a cost – simply halving the voxel-size pa-

108 L. Wade, R.E. Parent: Automated generation of control skeletons for use in animation

a b

c d

Fig. 11a–d. Control skeletons and poses for an octopus and a jellyfish. a, c Skeletons generated using a voxel-size parameter
of 0.008. b, d Figures from selected random poses of the skeletons

rameter will produce roughly eight times the number
of interior voxels and result in a related increase in
the running time. As long as the topology of the grid
is not compromised, a coarse grid can still produce
reasonable results; the main benefits of a finer grid
are better centralization of the control skeleton and
better determination of surface protrusions (the lat-
ter allows better application of the closeness-of-fit
parameter).

Several shortcomings of the algorithm have been
identified:

• Because the algorithm produces a tree-structured
control skeleton, it does not work very well for
objects with holes; for example, when given
an object such as a doughnut, it will create
a C-shaped skeleton. With some additional pro-
gramming, the algorithm might be extended to

L. Wade, R.E. Parent: Automated generation of control skeletons for use in animation 109

produce a kinematic constraint that effectively
closes the “C” during animation.

• The step-wise greedy approach to splitting the
control segments in order to produce a desired
number of them is probably not the optimal
method, especially since it only considers bifur-
cations of the segments.

• Long, straight sections of the path tree are some-
times segmented in a seemingly arbitrary fash-
ion. This can be the case when a figure’s arm
is posed without a bend at the elbow – some-
times no elbow joint is generated, at other times,
numerous joints are generated along the straight-
away (observe the arms and legs of the human
in Fig. 10, for instance). In contrast, when the
input figure has bent limbs, the algorithm does
very well at producing joints at the expected
locations.

• For many objects, a tree being one example, it
is probably not desirable to have the root joint
centrally located with respect to the articula-
tion points of the control skeleton. An input flag
could be provided to request that the root joint
be placed at the lowest end-voxel of the path
tree, or better yet, a user could simply select the
root once the control segments have been gener-
ated.

• The surface attachment scheme is rather sim-
plistic, which is an advantage in terms of easy
understanding and implementation, and it is quite
effective under moderate repositioning of the
control skeleton. However, the repositioned sur-
face can sometimes suffer from interpenetration
problems, especially when joints are bent be-
yond about 20 or 30◦. In the vicinity of the
joints, sufficient numbers of vertices are nec-
essary to minimize the penetrations, and the
algorithm could be extended to produce ex-
tra vertices near the joints; regardless, a bet-
ter and probably more complicated attachment
scheme is necessary to avoid the penetration
problem.

• Often the algorithm produces a control skele-
ton that overall is quite good but that could use
some tweaking. Since the focus of this research
has been the automation of the control skele-
ton construction, there is currently no interface
for tweaking it; nevertheless, such an interface
would definitely be useful and indeed would be
required for widespread use of the algorithm.
A better idea would be to convert the implemen-

tation into a plug-in for a software package de-
signed for modeling and animation and to allow
tweaking of an automatically generated skeleton
via the skeleton-control interface of that pack-
age.

5 Conclusion

In this paper we have described an approach to au-
tomating the process of generating control skeletons.
The method presented achieves a higher degree of
automation than previous approaches; furthermore,
the algorithm is very fast, quite general, and fairly
robust. With very little user input, the algorithm
produces control skeletons of relatively good qual-
ity, sometimes good enough for immediate use in
animation. At the very least, the algorithm is gen-
erally useful for providing an initial skeleton that
an animator could hand-tune. It is especially use-
ful for producing skeletons for more complex ob-
jects like trees or jellyfish, where creating a skele-
ton by hand would be a tedious and time-consuming
process.
The algorithm is intended as a general solution to
the problem of automatic generation of control skele-
tons. It must be emphasized that the algorithm con-
structs a control skeleton based solely upon a geo-
metric analysis of the object. The algorithm has no
knowledge of what kind of an object it is dealing
with, nor of any semantic relationships between the
parts of an object. Of course, this does not prevent
a user from having definite ideas about what kind of
skeleton should be produced based on what type of
object was provided as input. Nonetheless, even in
the face of possibly unrealistic assumptions on the
part of the user, the algorithm can often produce ac-
ceptable results.
Other research by the author has investigated the au-
tomated generation of anatomically appropriate con-
trol skeletons for human-like and animal-like models
(Wade 2000). Drawing on basic anatomical knowl-
edge and patterns, a simple semantic analysis of the
model’s shape is conducted, and various assump-
tions and heuristics are employed with the goal of
generating a control skeleton that mimics the ex-
pected anatomical flexibility of the model. The sys-
tem is also capable of producing individual bone
models tied to the control skeleton, providing a pos-
sible foundation for further anatomically based mod-
eling of the figure.

110 L. Wade, R.E. Parent: Automated generation of control skeletons for use in animation

Future research into control skeleton generation
might involve adaptive voxelization of the figure.
Various regions of the figure could be partitioned
in automated fashion using differently sized vox-
els, thus providing an appropriate number of voxels
in each particular region so that the corresponding
skeleton structure in that region could be gener-
ated at an appropriate level of detail. It may also
be possible to generate a sort of hierarchical con-
trol skeleton offering varying levels of articulation
(LOA) for a figure. Perhaps the levels of articula-
tion of the skeleton structure could even be mapped
to different level of detail (LOD) representations
of the model, allowing efficient switching of both
LOA and LOD for an articulated figure during
animation.

Acknowledgements. We would like to thank Meg Geroch, Matt Lewis,
and Pete Carswell for lengthy discussions about the research. Matt also
provided several humanoid data models for our use. We extend thanks
to Peter Gerstmann for creating several other models for us. Addition-
ally, we wish to thank Steve May, Rephael Wenger, and Wayne Carlson
for their comments and suggestions. Finally, a special thanks goes to
John Warren for the spirited discussion that inspired this research.
Maya is a registered trademark of Silicon Graphics, Inc., and exclu-
sively used by Alias|Wavefront, a division of Silicon Graphics Limited.
Linux is a registered trademark of Linus Torvalds. Ownership of all
other trademarks should be clear from context.

References
1. Bloomenthal J, Lim C (1999) Skeletal methods of shape

manipulation.
Available at http://www.unchainedgeometry.com

2. Breu H, Gil J, Kirkpatrick D, Werman M (1995) Linear
time Euclidean distance algorithms. IEEE Trans Pattern
Anal Mach Intell 17:529–533

3. Cormen TH, Leiserson CE, Rivest RL (1990) Introduction
to algorithms. MIT Press, Cambridge, Mass.

4. Danielsson P-E (1980) Euclidean distance mapping. Com-
put Graph Image Process 14(3):227–248

5. Gagvani N, Silver D (1999) Realistic volume animation
with alias. In: Volume Graphics, chap 15. Springer, Berlin
Heidelberg

6. Gagvani N, Kenchammana-Hosekote D, Silver D (1998)
Volume animation using the skeleton tree. In: IEEE Sym-
posium on Volume Visualization, pp 47–54; ISBN 0-8186-
9180-8

7. Ge Y, Fitzpatrick JM (1996) On the generation of skeletons
from discrete Euclidean distance maps. IEEE Trans Pattern
Anal Mach Intell 18(11):1055–1066

8. Lee T-C, Kashyap RL, Chu C-N (1994) Building skeleton
models via 3-D medial surface/axis thinning algorithms.
CVGIP: Graph Models Image Process 56(6):462–478

9. Ogniewicz RL, Kübler O (1995) Hierarchic voronoi skele-
tons. Pattern Recognition 28(3):343–359

10. Staunton RC (1996) An analysis of hexagonal thinning al-
gorithms and skeletal shape representation. Pattern Recog-
nition 29(7):1131–1146

11. Teichmann M, Teller S (1998) Assisted articulation of
closed polygonal models.
Available at http://graphics.lcs.mit.edu/˜marekt

12. Tsao Y-F, Fu K-S (1984) Stochastic skeleton modeling of
objects. Comput Vis Graph Image Process 25:348–370

13. Wade L (2000) Automated generation of control skeletons
for use in animation. PhD thesis, Ohio State University

14. Wade L, Parent RE (2000) Fast, fully-automated generation
of control skeletons for use in animation. In: Proceedings
of Computer Animation 2000, pp 189–194; A lengthier ver-
sion is available as Technical Report OSU-ACCAD-9/99-
TR3 (1999) Ohio State University, Advanced Computing
Center for the Arts and Design

LAWSON WADE received his
B.A. in Mathematics and Com-
puter Science from Capital Uni-
versity in 1991 before continu-
ing on in Computer and Informa-
tion Science at The Ohio State
University, where he received his
M.S. in 1993 and his Ph.D. in
2000. His research interests in-
clude computer graphics and an-
imation, computational geome-
try, and algorithms.

RICK PARENT is an Asso-
ciate Professor in the Depart-
ment of Computer and Informa-
tion Science at Ohio State Uni-
versity. He received his Ph.D.
in Computer Science from Ohio
State University in 1977 and
joined the faculty there in 1985.
His research focuses on motion
control algorithms for computer
animation, and he is particularly
interested in the modeling and
animation of the human form.

