
Photo VR: A System of Rendering High Quality Images for Virtual
Environments Using Sphere-like Polyhedral Environment Maps

Wen-kae Tsao Jiunn-jia Su Bing-yu Chen Ming Ouhyoung

Communication and Multimedia Lab.
Department of Computer Science and Information Engineering

National Taiwan University, Taipei, Taiwan, R.O.C.

Abstract

 In the first part of this paper, we describe a novel
method of panoramic view rendering for real-time
interactive applications trying to present a real-world like
environment. This is different from the QuickTime VR
approach, and is accomplished by generating a sphere-like
polyhedral environment map from photo-realistic images
and using the generated maps to render the scene by
techniques of computer graphics. In the second part, we
purpose a simple image-based method for observing a
certain object from different views interactively. We call
it "object viewer." Although some precision in alignment
is lost, the high complexity, high quality and high frame
rate performance on a Pentium PC without any hardware
supported makes this approach attractive in low cost
systems.

Introduction

 Traditionally, when we want to render a scene in the
real world, we model the scene by geometric elements,
such as triangles, and then render these objects. However,
this method usually works well only when the quantity and
complexity of objects are relatively low, often far below
those in the real world. Furthermore, the shading is either
too slow or unrealistic. On the other hand, the quantity
and complexity of objects in images taken from a camera
are almost the same as those in the real world.

 In recent years, some method of image-based rendering
has been developed, such as "image warping" used by
"QuickTime VR" of Apple Computer [1][2], or texture
mapping used by us [3]. These methods render the scene
by using cylinderic or prismatic environment maps
generated from images of the whole 360-degree view of
the scene. However, these methods have a common
problem: the environment map used can not cover the top
view and the bottom view, so the vertical viewing angle is
limited. In the following, we will propose a better method
that renders the scene by sphere-like polyhedral
environment maps, and thus the problem is solved.

 If the above problem is solved, we still have another
one, say object viewer, for real applications. The
traditional method for observing an object from all views
is to generate a polygon model of the object, and then the
model is rendered from different view points. However, it
is difficult or impossible to generate a model for some
objects, such as a fuzzy teddy or a valuable artifact. We
then propose an image-based method to solve this
problem.

Texture Mapping Approach

 To render the scene in a room, we propose a way to put
a camera in a proper position, such as the center of the
room, and then take images of the whole view from the
camera position. These images are arranged as a sphere-
like polyhedron consisting of textured trapezoids. This
polyhedron forms the environment map of the scene and is
used as the 3D model for rendering. It is clear to see that,
when moving around the center of this sphere-like
polyhedron, the image presented to the user will
approximate the one rendered by traditional method used
in computer graphics or even the one seen in the real
world if all objects in the room are a certain distance away
from the center.

 To render such a sphere-like polyhedron is quite easy:
no shading is required. No hidden surface problem occurs.
(Polygonal) texture mapping is usually contained in
rendering packages, libraries or graphic hardware
accelerators. Thus high complexity, high quality and high
frame rate become possible even on low cost PC systems.

 To allow a user walk around the scene, one can
generate several such sphere-like polyhedrons by taking
images from several different positions, each
corresponding to a "visible area" in the scene. One
polyhedron is rendered at a time, and only when the user
is in the corresponding "visible area" will the polyhedron
be rendered. Adjacent visible areas will be overlapped
instead of providing a clear border (figure 4), and if a user
is in the overlapped area, only the previously rendered

polyhedron will be rendered to avoid frequent switching
of 3D models when the user moves around the border. We
will describe this more clearly with an example later in
this paper.

 The switching between 3D models will be observed by
the user, just like the switching of acts in a film. Because
the switching is performed when the viewpoint is moving,
it will not be so annoying to the user. However, it is a
problem remaining unsolved by us yet. Linear
interpolation is, perhaps, not a practical solution. Not only
because the time for rendering will be at least doubled (for
at least 2 cylinder-like prisms need to be rendered), but
also because the interpolation may involve theories in
computer vision: objects in images must be identified and
located for interpolation. The complexity of these
interpolated images taken from the two real environment
images usually makes this process (object identification)
too slow and even impossible. However, if geometric
information of the scene is available and objects in the
images are identified in advance, interpolation (such as
morphing) might be possible.

Generate the Sphere-like Polyhedron

Assumptions

 The following are four assumptions of our system:

1. Geometric distortion of the camera lens is negligible
(ideal perspective projection).

2. The size, camera constants, horizontal and vertical

view angles of different images are the same.

3. All objects in the scene are far enough from the

camera such that the movement of the COP (center
of projection) caused by panning the camera is
negligible. Thus all optic axes of the images can be
regarded as intersected at the COP.

4. Each image is perpendicularly intersected by its
optic axis at its center.

Camera Calibration
 First, we have to measure the horizontal and vertical
viewing angle of the camera. Then we convert horizontal
viewing angle to the camera constant Fw, and convert
vertical viewing angle to the camera constant Fh:

Fw

W: image width

Fw = W

2
cot

horizontal viewing angle

2

Fh

 H: image height

Fh = H

2
cot

vertical viewing angle

2

Image Registration
If we do not know the absolute orientation of the

camera of each image, we can register the image by hand.
In our implementation, we provide a tool for automatic
registering by using the corresponding points within the
related portion of the environment map. If the result is
unacceptable, we provide another tool allowing a user to
manually register images or modify the registration. The
change can be processed in almost real-time.

Model Generation
 After all images are registered, a texture mapped
sphere-like polyhedron is generated. The essential concept
of model generation is simple: generate a sphere-like
polyhedron with its textures generated by ray-casting on
original images. The original images are arranged as
textured polygons in the space by their registrations, as
shown in the following figure.

Generate textured sphere-like polyhedron by ray-casting

Texture

 Polygons on the sphere-like polyhedron are all
trapezoids or triangles, so the storage of texture is a
problem: non-regular images are harder to handle than
regular ones. We simply divide the texture vertically
through the center and re-combine the two halves into a
rectangle as indicated above.

 As for determining the resolution of the texture, we
simply let the resolution (pixel/degree) at the center of the
trapezoid be the same as the resolution at the center of the
original image.

Smooth Intensity Discontinuity

 Generally, there are intensity discontinuity between
adjacent images, so the environment map generated by
previous ray-casting method will consist of patches. To
solve the intensity discontinuity, it is suggested that there
are overlapped portions between adjacent images, and the
ray-casting method is modified for this purpose: instead of
get color from the image first hit by the ray, we get colors
from all images hit by the ray, and average these colors
with the weight of each one. The weight is the square of
the distance (on image) between the corresponding pixel
and the nearest border, as indicated below.

x1

x2

C1

C2

result color = 1
2

2
2

1
2

2
2

x C x C
x x

* *1 2+

+
,

where x1, x2 are distances from the hit pixels to their

nearest borders.

 By using such weighted average, the intensity
discontinuity on the generated environment map will be
smoothed. However, for adjacent images of large intensity

difference, the overlapped portions may be insufficient.
So the exposure should still be properly controlled to
avoid large intensity difference between adjacent images
when taking them.
 Sometimes the border of the images may have noise, so
we can ignore colors of pixels too near to their nearest
borders by using the weighted average..

Image Data Handling

 The data volume of images is generally tremendous. A
512x512 digitized NTSC resolution image with R:G:B =
5:6:5 bits (2 bytes per pixel) will take 0.5 MB
(Megabytes). A typical sphere-like polyhedron made of
about 90 such NTSC resolution images (with adjacent
images overlapped) consists of 216 trapezoids will take
about 21.2 MB! Thus the data transfer between main
memory and storage device is relatively heavy, making
image compression necessary not only for saving storage
space but also for reducing data transfer. In our
implementation, the JPEG image compression is applied
to dramatically reduce the data size of textures. For the
previous example polyhedron, the data size of texture is
dramatically reduced from about 21.2 MB to about 3 MB,
making it suitable for some large but relatively slow
storing device such as CD-ROM, or for being transferred
through existing network such as Internet. However, the
image decompression usually takes time, so it is
performed only when necessary (for images used by
polygons that are going to be rendered right away) or
when the CPU is idle. The priority to determine which
image is decompressed first when CPU is idle or which
decompressed image is released first when memory is not
enough is simply by their relative location with respect to
the viewing direction: the nearer image has higher
priority.

A

B

viewing direction

Priority: image B > image A: when CPU is idle, image B
is decompressed before image A; when memory is
insufficient, image A is released before image B.

Object Viewer

 The goal of "object viewer" is to let a user interactively
observe an object from different views in real time. In
other words, the system must show different views of an
object. Thus, the essential idea of image-based method is
that the system sequentially shows the images taken from
the same object from different views, such as images A, B,
and C in the following figure.

A

B C

object

A 2D prototype of object viewer

 There is one major problem: how many images should
be taken? For full interaction, the images should be as
many as possible, but this will use too much disk space.
Thus we can just take a few images, and generate the
intermediate frames from these reference images. The
typical methods for the generation of the intermediate
frames are computer vision techniques, such as multi-view
stereo and 3-D scene representation [6][7]. These methods
generate reasonably good results, but they are time-
consuming, and cannot be used in real-time applications.
We find that a much simpler method is needed and
described below. In short, the intermediate frame, say A',
between A and B in the above figure is generated by
interpolation. That is, the color of each pixel on A' is the
weighted sum of the color of the corresponding pixel on A
and B. Then we sequentially show images A, A', and then
B.

 With this simple method, we find that for a 2-D
implementation, that is, the reference views are arranged
in a circle around the object in the horizontal plane, one
image per 15 degrees may be enough. One intermediate
frame is generated between two reference images. (Of
course, we can also generate more than one intermediate
frame, but one is enough.) The sequential show of the
reference images and intermediate frames is good enough
to fool human eyes. Thus the result would look like
arbitrary rotation of an object.

Result

 We have made three textured sphere-like polyhedrons.
Each polyhedron is made of 94 NTSC resolution images
(size of 640 x 480 pixels, with R:G:B = 5:6:5 bits per
pixel). These images are taken from the yard of the
Agriculture college at National Taiwan University (�U
�Ãm�). The polyhedron consists of 216 trapezoids.
By applying the JPEG image compression technique, the
data size of the whole texture is dramatically reduced from
21.2 MB to 3 MB. A walk through demo system is
implemented on an IBM Pentium-133 PC (a 486-DX2 66
is also suitable), under the MS-DOS operating system,
using the Watcom C++ compiler (version 10.0a), and an
ET-4000 SuperVGA card. The Win95 version is still
under development.

 A demonstration of the rendered results is given at the
end of the paper. However, there is a practical problem
remaining: it is almost impossible for some images to be
registered without objects on the border being duplicated
or lost in adjacent images because the camera was moved
during panning.

 Frame rate measurement is shown below as a table and
wes measured on a Pentium-133 PC. Image
decompression time is not included, where ý is the
latitude of viewing direction, as indicated in figure 5. The
frame rate decreases while latitude increases because the
number of trapezoids increases.

Frame
size

ý

319x199
No double

buffer

639x479
No double

buffer

319x199
VESA
double
buffer

639x479
VESA
double
buffer

0 44.31 16.46 34.76 13.65
15 42.73 16.38 33.80 13.00
30 41.14 15.44 32.99 12.13
45 38.13 14.66 27.70 11.94
60 35.26 13.14 23.33 10.33
65 33.80 12.60 23.16 10.27
70 32.76 12.35 22.74 9.88
75 30.33 11.83 22.70 9.10
80 27.64 10.92 19.85 8.23
85 27.30 10.57 17.59 8.09
90 25.28 10.19 16.99 8.08

 The third and forth columns are the frame rates when
we use the VESA standard to access ET4000 card and
make one more page in video memory for double buffer.

Double buffer provides better output quality, but there are
additional overheads.

 We also implement the "object viewer" in Win95. As
mentioned above, one image is taken per 15 degrees, and
one intermediate frame is generated between two
reference images. With Pentium-133 CPU, 16MB RAM,
the frame rate is about 6-8 frames per second. Porting to
Win95 by Microsoft direct 3D is under way, and the final
frame rate is expected to increase dramatically .

Conclusion

 Although our approach appears to be simple, the
method of generating textured sphere-like polyhedron
does work well, and the rendering result is surprising: the
illusion is pretty good when the user is kept near the
center of the sphere-like polyhedron enough and no
objects in the images are too near to the user. So it is easy
to fool human eyes. Simplicity is beautiful.

Future Work

 There are at least four items to be investigated in the
future, and are listed below:

1. How to select the positions for the cameras and the
corresponding "visible area"? Besides intuition, is
there any rules to follow or to assess, or even
algorithms to make the decision? This remains to
be studied.

2. A good editing tool for spherical environment maps

is essential. Currently the whole process of manual
editing takes 2-3 hours for just one sphere .

3. The images taken by a camera are static. How

about taking several images in the same direction
from the same position if the scene is dynamic and
choosing them according to the same order and
timing in rendering? The moving objects may
reveal the flaws of our "trick" of replacing the real
objects by a textured wall; but on the other hand, a
dynamic scene may be more realistic. And the user
may be attracted by the movement and thus more
easily to be fooled by our "trick".

4. Shading not being necessary in our approach implies

specular lights are not handled. In an environment
where specular lights are obvious and important

(such as a room with a mirror) this may be a serious
problem. Can this approach be extended to handle
specular lights?

References

[1] Apple Computer, "Quick Time VR" software package,
1995.

[2] Shenchang Eric Chen, "QuickTime(R) VR-An Image-

Based Approach to Virtual Environment Navigation",
ACM SIGGRAPH '95 p.29-p.38, 1995

[3] Wen-kae Tsao, Ming Ouhyoung, "An Alternative

Approach of Rendering High Quality Images for
Virtual Environments Using Scanned Images", IEEE
HDTV '95, p.7B-1 ~p.7B-8,1995. (Also appears in
proceedings of RAMS' 95, p.71-p.78)

[4] Shenchang Eric Chen, Lance Williams, "View

Interpolation for Image Synthesis.", ACM
SIGGRAPH '93, p.279-p.288, 1993.

[5] Foley, van Dan, Feiner, Hughes, "Computer Graphics:

Principles and Practice", 2nd Edition, Addison
Wesley.

[6] R.M.Haralick, L.G.Shapiro, "Computer and Robot
Vision", Volume I and II, Addison Wesley, Reading,
MA, 1992.

[7] Stpphane Laveau, Olivier Faugeras, "3-D Scene

Representation as a Collection of Images and
Fundamental Matrices", Technical Report 2205,
INRIA, 1994.

[8] Wen-kae Tsao, "Rendering Scenes in the Real World

for Virtual Environment Using Scanned Images", MS
thesis, Dept. Of CSIE, National Taiwan University,
June 1996.

Appendix: Demonstration

Fig.1 part of the original 94 images

Fig.2 Part of the environment map generated by ordinary
ray-casting. There is obvious intensity discontinuity.

Fig.3 By applying the proposed modified version of ray-
casting, the intensity discontinuity is smoothed.

Visible Area

When selected to be rendered,
this sphere-like polyhedron is put here
such that its center is at the same
position as the one of its visible
area

Visible
area of
sphere-like
polyhedron A

The
previously
rendered
sphere-like
polyhedron
before this
overlapped
area is entred
is rendered

Sphere-like
polyhedron A
is rendered
when user
is in this
area

Sphere-like
polyhedron B
is rendered
when user
is in this
area

Visible
area of
sphere-like
polyhedron C

Visible
area of
sphere-like
polyhedron B

Fig. 4 We have chosen 3 positions in the yard of the
college of Agriculture at National Taiwan University
(�U�Ãm�) to take photos and generate sphere-
like polyhedrons as indicated above. The upper figure
shows how these 3 sphere-like polyhedrons are put in 3D
space in the same plane according to the relative positions
of where their images are taken, and how they are selected
to be rendered. When a sphere-like polyhedron is selected
to be rendered, it is put in the 3D space with its center at
the same position as the center of its corresponding visible
area, as shown in the lower figure.

Fig.5 Rendered results when the viewpoint is at the
center of the sphere-like polyhedron

X axis

ý

ð

viewing direction

(1) ð= 0Hÿ= 0H

(2) ð= 41.7H ÿ= 0.6H

(3) ð= 36.7H ÿ= 18.1H

(4) ð= -11.0H ÿ= 37.4H

(5) ð= -11.6H ÿ= 80.1H

(6) ð= -27.4H ÿ= -12.3H

(7) ð= -21.4H ÿ= -40.2H

(8) ð= 103.9H ÿ= -72.8H

Fig.6 Rendered image when the viewpoint of figure 5-(1)
is moved 1/3 "radius" (distance from the center of the
sphere-like polyhedron to any face) away from the center
of the polyhedron

Fig.7 Rendered image when the viewing direction of Fig.6
is turned 45 degrees away from the original direction

Fig. 8. A snap shot of an object viewer

